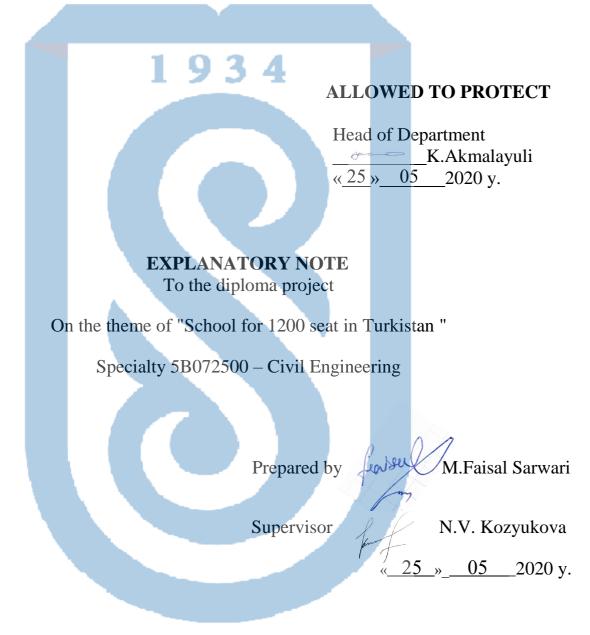
MINISTRY OF EDUCATION AND SCIENCE OF THE REPUBLIC OF KAZAKHSTAN

Kazakh National Research Technical University named after K.I. Satpayev

Institute of Architecture, Construction and Energy named after T. Basenov

Department of «Construction and Building Materials»


1934	
Mohammad Faisal Sat On the theme of "School for 1200 To the diploma project	seat in Turkistan"
EXPLANATORY NO	OTE
Specialty 5B072900 - Cons	struction

Almaty 2020

MINISTRY OF EDUCATION AND SCIENCE OF THE REPUBLIC OF KAZAKHSTAN Kazakh National Research Technical University named after K.I. Satpayev

Institute of Architecture, Construction and Energy named after T. Basenov

Department of «Construction and Building Materials»

Almaty 2020

MINISTRY OF EDUCATION AND SCIENCE OF THE REPUBLIC OF KAZAKHSTAN

Kazakh National Research Technical University named after K.I. Satpayev Institute of Architecture, Construction and Energy named after T. Basenov Department of «Construction and Building Materials»

I APPROVE

Head of the department

K.A. Akmalayuli «2<u>5</u>» <u>05</u> 2020 y.

ASSIGNMENT Complete a diploma project

Student ___ Mohammad Faisal

Topic "School for 1200 seat in Turkistan"

 \mathbb{N}_{2} - endorsed by the request.

Approved by the Order of the Rector of the University No. 762-b of January 27, 2020. The deadline for completion is May 18, 2020.

Beginning entries of the certificate venture: construction locale – Turkistan.

Rundown of issues to be considered in the recognition venture:

1. Architectural and development division: qualities of the development region; three-dimensional arranging choices; structural and plan arrangements; external divider warm designing bookkeeping; building hardware of the structure;

2. Computational and valuable segment: count of burdens and making of the computation conspire, figuring of the board and its estimation of fortified solid components dependent on the outcomes and their motivation

3. Technology and association of development creation and work security: land assurance of the volume of underground and surface works; assurance of the quantity of solid trucks; surface strengthened cement of the structure development of innovative guide of structures establishment; object plan of development end-all strategy; Schedule. 4. Division of Construction Economics: neighborhood and article planning of assessments,

List of drawing materials (compulsory drawings must be indicated):

- 1. Facade of the structure, segments, joints, determinations, plans 4 sheets;
- 2. Drawing, detail of the section 2 sheets;

3. Calendar arrangement of development creation, general development plan, - 2 Sheets

11 slides of the presentation of work are provided.

Recommended basic literature: SP RK 2.04-01-2017 Construction Climatology, SN RK 2.04-04-2013 Construction Heat Engineering, SN RK 2.03-30-2017 Construction in Seismic Zones.

№ Sections 33% 66% 100% Примечание 1 Predesign analysis Architectural and 18.02.2019г.construction 01.03.2019г. 18.03.2019г. -2 Settlement 29.03.2019г. constructive 3 Technology and organization of 03.04.2020г.construction 19.04.2020г. production and labor 4 protection Economic Anti-plagiarism, norm 18.05.2020y.-22.05.2020y. 4 control, pre-defense 01.06.2020-05.06.2020y. 5 Defence

SCHEDULE Preparation of thesis (project)

Signatures

Consultants and the normative controller for the completed diploma work (project) with an indication of the sections of work (project) related to them

	2		
Name of sections	Consultants, I.O.F. (academic	date of signing	Signature
	degree, rank)		
Architectural building	N.V. Kozyukova,	25.05.2020	l
	master of technical science	23.03.2020	Kung
Settlement and	A.P.Turganbaev, master	25.05.2020	at A
constructive	of technical science	23.03.2020	the upart
Technology and	I.Z. Kashkinbaev, doctor		. [-
organization of	of technical science	25 05 2020	lifenny
construction		25.05.2020	0 /
production			
Economic section	N.V. Kozyukova,	25.05.0000	10
	master of technical science	25.05.2020	Kung
Norm controller	N.V. Kozyukova,	25.05.0020	l l
	master of technical science	25.05.2020	Kung

fearser fearser

Supervisor The student accepted The task Date N.V. Kozyukova

M.Faisal Sarwari

АННОТАЦИЯ

Тема работы: «Школа на 1200 мест в городе Туркестан»

Здание трехэтажное и подземное, обрамлено и выполнено в форме Н. В этом проекте в архитектурно-строительных, расчетно-инженерных и инженерных частях принимались инженерные решения. Определены общие технико экономические показатели проекта, а также приняты решения по охране окружающей среды.

АНДАТПА

Жұмыс барысы: «Түркістан қаласындағы 1200 орындық мектеп»

Гимарат үш қабатты және жер асты еденнен тұрады, жиектелген және Н түрінде жасалынған. Бұл жобада сәулет-құрылыс, кенттік және инженерліктехникалық бөліктерде инженерлік шешімдер қабылданды. Жобаның жалпы техникалық-экономикалық көрсеткіштері, сонымен қатар қоршаған ортаны қорғау бойынша қабылданған шешімдер анықталған.

ANNOTATION

Them of work: "School for 1200 seat in Turkistan City"

The building is three-storey and underground floor, framed and designed in an H form. In this project, in architectural and construction, settlement and engineering and engineering parts made engineering decisions. The general technical and economic indicators of the project are identified, and also accepted decisions on environmental protection.

CONTENT

Introduction	7
1 Architectural part	8
1.1 Land characteristic	8
1.2 Temperature conditions	8
1.3 Constructive decisions	8
1.4 Fire protection requirements	9
1.5 Availability	9
1.6 Thermomechanical calculation	11
2 Structural part	13
2.1 The calculation of column	13
3 Technological part	18
3.1 Characterization of soil development conditions	18
3.2 Determination of the scope of work	18
4.3 The selection of a set of machines for excavation	19
3.4 Selection of special equipment	22
3.5 Selection of soil compacting machines	23
3.6 The aboveground part scoping	25
3.7 Safety and environmental protection	26
4 Economic part	29
Conclusion	30
List of reference	31
Applications	32

INTRODUCTION

The school building with 1200 seats has an H-shaped configuration. Central the seventh block - connecting - school-wide, where the administrative premises, as well as classrooms. The main entrance is located in the seventh block. In the first and fifth blocks, at mark 0,000 and +3,300, there are primary classrooms. On the mark +6,600 secondary and high school classes are located. These blocks have a separate input group. In the second and sixth block are the main cabinet's schools, as well as a wardrobe, offices of the director, administration and teachers. Data blocks also have a separate input group.

In the eighth block there is a gym with dimensions in the axes of $13.2 \times 25.2 \text{ m}$. The catering unit is located in the tenth block, and has its own entrance and boot. On the first floor of the ninth block there is a dining room, on the second library, on the third computer science classes.

The first, second, third, fourth, fifth, sixth, seventh, ninth blocks designed in three floors with a technical underground and ventilated attic space. The eighth and tenth block has one floor and a technical underground. Floor height from floor to floor 3.3m.

This planning solution allowed the most appropriate use the area of construction, and also eliminates the intersection of flows of high school and primary.

In the eighth block there is a gym with dimensions in the axes of 13.2 x 25.2 m. The catering unit is located in the tenth block, and has its own entrance and boot. On the first floor of the ninth block there is a dining room, on the second library, on the third computer science classes.

This planning solution allowed the most appropriate use the area of construction, and also eliminates the intersection of flows of high school and primary.

The first, second, third, fourth, fifth, sixth, seventh, ninth blocks designed in three floors with a technical underground and ventilated attic space. The eighth and tenth block has one floor and a technical underground. Floor height from floor to floor 3.3m.

In the first and fifth blocks, at mark 0,000 and +3,300, there are primary classrooms. On the mark +6,600 secondary and high school classes are located. These blocks have a separate input group. In the second and sixth block are the main cabinet's schools, as well as a wardrobe, offices of the director, administration and teachers. Data blocks also have a separate input group.

1. Architectural part

Project "Construction of a school for 1200 places, located at: Turkistan city

1.1 Land characteristic:

- Site seismicity 6 points
- Construction and climatic zone: IV-G;
- Estimated load of snow cover weight 0.5 kPa
- Wind region III, standard load of wind pressure 38 kg / m^2
- Design temperature of outdoor air in winter period: -20 ° C;
- Humidity zone: dry;

1.2 Temperature conditions:

- Average annual temperature: 17.6 ° C;
- Absolute minimum: -20 ° C;
- Absolute maximum: -20 ° C;

- The climate of the region is continental, winters are short and summers are long and hot; For the conditional mark 0,000, the surface of the clean floor of the first floor is taken which corresponds to an absolute mark of 874.0 according to the general plan.

1.3. Constructive decisions

Ceilings - monolithic reinforced concrete flat thicknesses. 200mm External walls - wall panels "UTC-light wall" made of polystyrene concrete. 210 mm, on metal rolling fasteners.

Insulation of external walls (on columns and reinforced concrete walls) - hard mineral wool plates PTE-150 on a basalt basis, combustibility NG, a thickness of 80mm.

Internal partitions - wall panels "UTC-light wall" made of polystyrene concrete thickness 90 mm, on metal rolling fasteners.

The parapet is made of cast concrete.

The roof is flat ventilated.

Exterior finish of facades - building walls - steel panels of thicknesses. 0.7mm Polymer-cement facade plaster (tinted or with subsequent painting) according to reinforcing fiberglass mesh, basement, porch - granite.

Stained-glass windows - double glazed, metal-plastic, aluminum. IN energysaving glazing is used for light-shielding constructions.

Windows - double glazed, metal-plastic. In light-guarding designs use energy-

saving glazing.

Doors - individual, dimensions in accordance with GOST6629-88, GOST24698-81.

Floors - ceramic tiles, porcelain stoneware, linoleum, carpet, boardwalks.

Technical risers (sewer, ventilation and for water supply)

To sew with plasterboard using sound insulation - min.vat P75 GOST 9573-96 - Thickness 50mm.

Floor communication of blocks is carried out by stairs (type L1) the design life indicator is 20 years.

Horizontal waterproofing of walls from soil moisture is made of cement a solution of composition 1.2 with sealing additives with a thickness of 20 mm per level. -0,200. Around buildings to make a blind area of fine-grained asphalt concrete with a thickness of 30 mm, 1.5 m wide on the crushed stone base.

Activities for the production of work in the winter are not provided for by the project.

1.4. Fire protection requirements

When developing a working draft, fire safety standards and SNiP requirements were taken into account RK 2.02-05-2009 "Fire safety of buildings and structures", Technical regulations from 01/16/2009 "General requirements for fire safety."

Fire safety and the necessary degree of fire resistance of the building provide fireproof supporting and enclosing structures adopted in the working draft and materials.

The dimensions of the door blocks adopted in the working draft and their quantity provide free evacuation of people in case of fire.

Evacuation of people from floors is carried out through staircases of type L1. To protect steel structures indoors, Phosphate is used. OFP-MM flame retardant coating: OFP-MM (GOST 23791-79) and OFP-MV (GOST) compositions 25665-83). The composition is applied to steel structures primed with iron minium according to GOST 8135-74 * or soil type GF according to GOST 12707-77 in accordance with the requirements of SNiP for the design of protection of steel structures against corrosion. Coating elements are painted with fire retardants to the limit of fire resistance not less than 30 minutes.

The lining of the outer surfaces of the outer walls is made of non-combustible materials. Walls and ceilings in the common corridors and stairwells are made of non-combustible materials. Floors in the lobby, stairwells and corridors are non-combustible materials.

1.5. Availability

The entrance to the school building is equipped with a ramp for disabled people.

On the The first, second and third floor is designed for disabled people.

Vertical communication is carried out by means of the passenger elevator "ALATAU" with cab dimensions 1300 x 2100 mm. The lift capacity is 1150 kg.

	l'able	e-1 Tech		nd ecor	iomic i	ndicate	ors					
Name	un it	Indicato										
	M ²	Block 1	Block 2	Bloc k3	Bloc k4	Bloc k5	Bloc k6	Bloc k7	Bloc k8	Bloc k9	Block 10	Total
total area		3179, 2	3163, 2	120 7 , 0	1135, 4	1478, 6	1473, 4	1391, 7	978,4	913,5	631,2	15551 ,6
including above mark 0,000	M ²	2444, 2	2426, 3	724,7	663,5	1155, 2	1148, 4	1348, 6	340,4	830,1	309,2	11390 ,6
including below mark 0,000	M ²	735,0	736,9	482,3	471,9	323,4	325,0	43,1	638,0	83,4	322,0	4161, 0
Effective area	M ²	3066, 4	3050, 4	1130, 8	1059, 2	1391	1383, 4	1302, 8	978,4	853,5	631,2	14847 ,1
Estimated Area	M ²	1823, 7	1830, 6	592,7	583,7	907,2	912,1	714,3	340,4	756,7	234,2	8695, 6
Construct ion volume building	M ³	10149 ,7	10139 ,3	3675, 0	3675, 0	4529, 2	4529, 2	5677, 5	4334, 2	3832, 1	1911, 1	52452 ,3
including above mark 0,000	M ³	8038, 8	8028, 4	2929, 8	2929, 8	3585, 8	3585, 8	4460, 9	3307, 7	2914, 9	1051, 1	40843 ,4
including below mark 0,000	M ³	2110, 9	2110, 9	745,2	745,2	943,4	943,4	1216, 6	1026, 5	917,2	860,0	11619 ,3
Built-up area building	M ²	886,4	885,7	319,2	319,2	406,1	404,0	584,8	407,6	367,9	396,6	4977, 5

Table-1 Technical and economic indicators

* The volume of ventilated sub-roofing is not included in the construction volume of the building (attic) space

* Ventilated area is not included in the total, usable and estimated area of the building subroofing (attic) space

1.6 Thermotechanical estimation of the outside mass of the structure

Discover the reasonableness of the arranged divider structure for the climatic states of Almaty. The wet mode in the room is the standard thing, climatic zone of development as far as moistness is dry.

Table -2 Thermotechanical characteristics of multiluar wan layers										
			Δ	ρ	λ		S			
		1	(M) 3	(кг/м ³)	(Вт/	м∙°С)	$(BT/M \cdot ^{\circ}C)$			
ofing			0,02	1000	0,21		6,20			
ı - mi	ineral	wool	0.0	200	0.00		1 4 4			
			0,8	300	0,09		1,44			
orick			0,50	1600	0,64		8,48			
cemer	t plas	ter	0.07	1000	0.74		0.6			
	1		0,07	1800	0,76		9,6			
	ofing - mi orick	ofing - mineral orick	ofing - mineral wool	Δ (M)ofing0,02- mineral wool0,8orick0,50	$ \begin{array}{c cccc} \Delta & \rho \\ (M) & (K\Gamma/M^3) \\ \hline \text{ofing} & 0,02 & 1000 \\ \hline \text{a - mineral wool} & 0,8 & 300 \\ \hline \text{orick} & 0,50 & 1600 \\ \hline \text{cement plaster} & \hline \end{array} $	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $			

Table -2 Thermotechanical characteristics of individual wall layers

• Coefficient n = 1 for an external wall;

- Standard external differential $\Delta t_n = 4 \circ C$;
- Coefficient of heat transfer the inner surface of $\alpha_i = 8.7 \text{ W} / (\text{m } 2 \cdot \circ \text{C});$

• Coefficient of heat transfer of the outer surface $\alpha_e = 23$ W / (m 2 · ° C) 2. Determine the resistance of the intended wall design heat transfer R0:1

$$R0 = \frac{1}{\alpha i} + \frac{\delta 1}{\gamma_1} + \frac{\delta 2}{\gamma_2} + \frac{\delta 3}{\gamma_3} + \frac{\delta 4}{\gamma_4} + \frac{\delta 5}{\gamma_5} + \frac{1}{\alpha e} = \frac{1}{8.7} + \frac{0.02}{0.21} + \frac{0.08}{0.09} + \frac{0.50}{0.64} + \frac{0.07}{0.76} + \frac{1}{23} = 1.992 \ m^{2\circ}C/Bm$$

We determine the characteristic of thermal inertia of the wall D:

$$D = \frac{\delta 1}{\gamma 1} \cdot S1 + \frac{\delta 2}{\gamma 2} \cdot S2 + \frac{\delta 3}{\gamma 3} \cdot S3 + \frac{\delta 4}{\gamma 4} \cdot S4$$

= $\frac{0.02}{0.21} \cdot 6.20 + \frac{0.08}{0.09} \cdot 1.44 + \frac{0.50}{0.64} \cdot 8.48 + \frac{0.07}{0.76} \cdot 9.6 = 9.379$


At D = 5.826> 5 the fence is of "great inertia". Determine the required wall resistance to heat transfer $_{R0}^{mp}$:

$$R_0^{mp} = \frac{n(t_i - t_n)}{\alpha_i \Delta t_n} = 1(20 - (-20)/8.7 * 4 = 1.14m^{2} \text{°C}/Bm$$

Check the suitability of the intended wall design. Check condition:

$$R_0^{mp} \ge R_0$$

 $R_0^{mp} = 1.14 \ m^{2}$ °C/ $Bm < R_0 = 1.992 m^{2}$ °C/BmThe intended wall design is suitable for climatic conditions. This area of Construction.

2. Structural part

2.1 The calculation of the column of the middle row

Decide the cross-sectional components of the solid segment on Ground floor and territory of working fittings the structure has three stories. Range L = 6.6 m, separating between segments = 6.6 m. Floor tallness is 3.2 meter. The heaviness of cement is B30, the coefficient of working state of cement. Three-level work extras, flat adornments AI level. The section is a fortified sewn casing.

Coating Load:

 $g^{n} = 5.8kn/m^{2}$ $g = 7.13kn/m^{2}$ $P_{l}^{n} = -;$ $P_{sh}^{n} = 0.7Kn/m^{2};$ $g^{n} = 5.8kn/m^{2}$ $g = 6.51kn/m^{2}$ $P_{l}^{n} = 0.3Kn/m^{2};$ $P_{sh}^{n} = 1.2Kn/m^{2};$

The load from the floor:

1. We write out from the tables the basic design characteristics of the materials: For concrete of class B30

$$R_{b} = 11,5 \text{ MPa} = 1,15 \text{ } \text{\kappa}\text{H/cm}^{2},$$

$$E_{b} = 24500 \text{ MPa} = 2450 \text{ } \text{\kappa}\text{H/cm}^{2},$$
Taking into account the coefficient $\gamma_{b2} = 0.9$

$$R_{b} = 10,35 \text{ MPa} = 1,035 \text{ } \text{\kappa}\text{H/cm}^{2},$$
For working fittings, class III

$$R_{s} = 365 \text{ MPa} = 36,5 \text{ } \text{\kappa}\text{H/cm}^{2};$$

$$E_{s} = 200000 \text{ } \text{M} \text{\Pi} \text{a} = 20000 \text{ } \text{\kappa}\text{H/cm}^{2};$$

$$\begin{cases} \xi_{R} = 0.65 \\ A_{0R} = 0.451 \end{cases}$$
For concrete of class P20

For concrete of class B30

For class AIIII fittings

2. We collect the load on the column, taking into account the coefficient of reliability $\gamma_n = 0.95$

The cargo area of the column is determined by the formula:

$$\omega = \left\{\frac{L}{2} + \frac{L}{2}\right\} * \left\{\frac{B}{2} + \frac{B}{2}\right\} = \left\{\frac{6.6}{2} + \frac{6.6}{2}\right\} * \left\{\frac{6.6}{2} + \frac{6.6}{2}\right\} = 43.56i'^2$$

Type of load		N _{Sh} n (кН)			^{Sh} H)
Coating Load: $(\omega = 43,56 \text{m}^2)$ I. Constant load	252,64	8 30,5	1,4	310,58	42,7
1. Normative 5,8×43,56 2. Estimated7,13×43,56	4		1,4		
II. Temporary load					
(Snow load) long	-				
1. Short-term				-	
2. 0.7 × 43.56					
Total coating load	252,	30		310	42, 7
Floor load	648	,5		,58	1
$(ω = 43,56$ $\overset{\circ}{}$ M ²) I. Permanent					
Load.	227 3,83	47 0,	1,3	254 8,2	61
1. Normative $5,8 \times 43,56 \times 3$	5,05	4	1,3	6	1,5
2. Estimated					
$6.5 \times 43.56 \times 3$					
II. Temporary (Payload)				152	
1.Long	117, 61	.2		,9	
$0.3 \times 43.56 \times 3$					
2. Short-term 1.2 × 43.56 × 3					
	239	47		270	61
Total floor load	1,44 2	0, 4		1,1 6	1,5

Table 3 - Collection of loads on the column

3 Determine the working height and the distance to the cross section of the column.

$$h0 = h - a = 40 - 3 = 37$$
 cm

Where a = 3cm.

3. Determine the estimated length of the column

$$L0 = 0.7H = 0.7H_f = 0.7 * 3.9 = 2.73 = 273ni$$

Where H is the distance between the sections fixed from the offset.

1. Determine the random eccentricity e:

$$e_a \begin{cases} \geq \frac{1}{600} H a_a = \frac{1}{600} * 273 = 0.455 ni \\ \geq \frac{1}{30} h_{col} a_a = \frac{1}{30} * 50 = 1.66 ni \\ \geq 1 cm a_a = 1 ni \end{cases}$$

h- Column section height

Of these three values, we finally take the highest $e_a = 1.66$ cm

6. Determine the initial eccentricity e_0 :

Ео = еа=1,66см.

7. Determine the flexibility of the column λ :

$$\lambda = \frac{L0}{hcol} = \frac{273}{40} = 6.825$$

8. Determine the coefficient, taking into account the impact of additional action on the deflecting element:

$$\varphi_L = 1 + \beta \frac{N_L * e_a}{N * e_a} \le 1 + \beta$$
$$\varphi_L = 1 + 1 \frac{2861,15 \ 1.66}{3482,59 \ 1.66} = 1.82 < 1 + 1 = 2$$
$$N = N_L + N_{sh} = 2861.15 + 621.44 = 3482.59eL$$

Where coefficient $\beta = 1$ for heavy concrete.

9. We determine the coefficient de and de min:

$$\delta_a = \frac{a_0}{h_{col}} \ge \delta_{min} = \frac{1.66}{40} = 0.04ni$$

 $\delta_{emin} = 0.5 - 0.01 * \frac{a_0}{h_{col}} - 0.01 * R_b = 0.5 - 0.01 * 0.04 - 0.01 * 10.35 = 0.39$

Where Rb -is substituted in MPa.

Of the two values obtained, we finally take the largest, $\delta emin = 0.39$

10. Determine the moment of inertia of the cross section of the column:

$$I = \frac{b_{col} * h_{col}^3}{12} = \frac{40 * 40^3}{12} = 213333.3$$

11. Determine the ratio of elastic moduli:

$$\alpha = \frac{E_s}{E_b} = \frac{20000}{2450} = 8.16 \approx 8.1$$

12. We determine the critical force Ncr and check the condition N ≤ Ncr:

$$N_{cr} = \frac{6.4 * E_b}{L_0^2} * \left[\frac{I}{\varphi_l} \left(\frac{0.11}{0.1 * \delta_e} + 0.1 \right) + 0.25 * \alpha * \mu * b_{col} * h_{col*(h_0 - \alpha')^2} \right]$$

$$= > \frac{15680}{273^2} * \left[\frac{213333,3}{1,82} \left(\frac{0.11}{0.1 * 0.39} + 0.1 \right) + 0.25 * 8.9 * 0.01 * 40 * 40_{*(37-3)^2} \right]$$

$$= 38579,67$$

Where $\mu = 0.01$ is the reinforcement coefficient,

$$N = 3482.59 \text{ kN} \le \text{Ncr} = 38579.67 \text{ kN}$$

The conditions are met, the dimensions of the cross section of the column are sufficient.

13. Determine the coefficient of increase in eccentricity:

$$\eta = \frac{1}{1 - \frac{N}{N_{cr}}} > 1$$
$$\eta = \frac{1}{1 - \frac{3482,59}{38579,67}} = 1.09 > 1$$

The condition is met, the dimensions of the cross-section of the column are sufficient.

14. Determine the distance e:

 $e = e_0 * \eta + 0.5 * (h_{col} - a') = 1,66 * 1,09 + 0.5 * (40 - 3) = 20.3ni$

15. Determine the cross-sectional area of the compressed, stretched, working fittings:

In our case, it is advisable to symmetric reinforced columns $(A_s = A'_s)$:

a) Determine the relative height of the longitudinal force an:

$$\alpha_n = \frac{N}{R_b * b_{col} * h_0} = \frac{3482,59}{1.035 * 40 * 37} 2.27$$

b) Determine δ' :

$$\delta' = \frac{a'}{h_0} = \frac{3}{37} = 0,08;$$

c) Determine the coefficient aml:

$$\alpha_{m1} = \frac{N * e}{R_0 * b_{col} * h_0^2} = \frac{3482,59 * 20,3}{1.035 * 40 * 37^2} = 1.2$$

d) We define as:

$$\alpha_s = \frac{\alpha_{m1} - \alpha_n * \left(1 - \frac{\alpha_n}{2}\right)}{1 - \delta'} = \frac{1.2 - 2.27 \left(1 - \frac{2.27}{2}\right)}{1 - 0.08} = 2.16$$

d) Determine the relative height of the compressed section $zone\xi$:

$$\xi = \frac{\alpha_n * (1 - \xi_R)}{1 - \xi_R + 2 * \alpha_s} = \frac{2.27(1 - 0.65) + 2 * 2.16 * 0.65}{1 - 0.65 + 2 * 2.16} = 0.77$$

e) Determine the case of symmetrical reinforcement;

$$\xi = 0.77 > \xi_R = 0.65$$

This is the second case of symmetric amplification; f) Determine the cross-sectional area of the working steel:

$$A_{s} = A'_{s} = \frac{R_{b}*b_{col}*h_{0}}{R_{s}}*\frac{\alpha_{m1}-\xi*\left(1-\frac{\xi}{2}\right)}{1-\delta'} = \frac{1.035*40*37}{36.5}*\frac{1.2-0.77*\left(1-\frac{0.77}{2}\right)}{1-0.08} = 6.2 \text{ni}^{2}$$

Accepted by assortment: - Stretched working fittings - 2Ø20AIII A = 6.28

- Compressed working fittings - $2\emptyset 2AIII A = 6.28$

16. Check the percentage of reinforcement μ :

$$\mu = \frac{A_s + A_s}{b * h} * 100\% = \frac{6.28 + 6.28}{40 + 40} * 100\% = 1.57\%$$

$$\mu\% \min \le \mu\% \le \mu\max$$

$$0.3\% \le 1.57\% \le 3\%$$

17. We construct a column. We reinforce the column with knitted frames, Consisting of compressed working reinforcement Ø20AIII, extended working Reinforcement Ø20AIII and transverse reinforcement (clamps) Ø8AI, Set in increments of S = 15 cm. Column reinforcement in detail Shown in the drawing.

3 Technological part

3.1 Characterization of soil development conditions

III - category - Medium or heavy clay, loose, loamy dense. Construction waste in volume is about 10%

Table 4	4 - Ch	aracteristic	es of the soil		
Names			unit 🥥 🖪 of	Numeric	Note
			measurement	data	
Soil group				TTL	ENiR 2, Issue 1, pp.
				111	6-12
Average soi	l dens	ity	kg/m^3	1900	ENiR 2, issue 1
Coefficient	of	initial	%	24-30	ENiR 2, issue 1 p.
loosening			70	24-30	206
Residual Lo	osenii	ng Ra <mark>tio</mark>	%	4-7	ENiR 2, issue 1 p.
			%0	4-7	206
Slope coeffi	cient				"Technology of
			%	0,5	construction
					processes", p. 27

Soil is transported at a distance of: 6 km Average winter temperature of external influence: -15°C The mark of the base of the foundation is set at -1.2 m UGV: -4.00 m

3.2 Determination of the scope of work

When using working drawings of a building, the volume of work is calculated. On the basis of a complex technological process during the production of zero-cycle work, a list of work volumes is selected. Earth volumes of work are considered when designing earthworks, during the creation of PIC (construction organization projects) and PPR (work production projects).

The calculation of the volume of the pit 1

Vк= H/6 · (a·b+c·d+ (a+c) · (b+d)), м3

Where A, b - the width and length of the pit on the bottom

- C, d width and length of the pit on top
- *V*к=1.26· (80.2·58+81·58.6+ (80.2+81) · (58+58.6)) =7518 м3
- Determination of backfill volume 2.

Vобр.з. =Vк−Vф−Vподв / 1+Ко.р., м3 Vобр.з=7518−3428 / 1+0, 04=3932 м3
Where $V\phi$ - volume of foundation elements
Ko.p the coefficient of residual loosening
3. Determination of the amount of excess soil
Vизл.г=Vк-Vобр.з, мЗ
Vизл.г=7518-3932= 3586 м
4. Determination of the volume of soil shortage
V н.г=а·b·hнед, м3
Ннед=0, 1÷0, 4 м
Vн.г=930 м3
5. Determination of the cut-off area of the plant layer
Fcpe ₃ = $(10+c+10)(10+d+10)$, M2
Fcpe3=101*78.6=7938 м2
6. The total volume of cuts of plant soil.
V=S*hpr=7938*0, 2=1587, 6 м3
7. Soil compaction area
Fупл = Vo.3. /hy
Where hy - thickness of the sealing layer
Fупл =3932/0, 2 = 19660 м2
8. Foundation waterproofing area: $S = 3828 \text{ m}^2$

3.3 The selection of a set of machines for excavation

In construction, currently 4 methods of soil development are used: mechanical, hydro mechanical, explosive and combined. Backhoe excavators move along and across the pit, and can move in a zigzag fashion. Excavation is carried out with the help of an excavator equipped with a backhoe with soil loading into dump trucks or with partial dumping into a dump

Bulldozer selection

Initial data:

To do this, select the DZ-8 bulldozer based on the T-100 tractor. We find the operational performance of the bulldozer:

$$Pa = \frac{60 * t * q * \alpha * k_b}{T_n + T_p + \frac{l_g}{V_g} + \frac{l_p}{V_p}}$$
(1)

Where T - The duration of the shift, h

q - Volume of soil in a dense state, m3

 α - coefficient taking into account soil loss during displacement

$$\alpha = 1 - 0.0051\Gamma = 0.95$$

KV - coefficient of use of the machine in time (0.8)

TN - the duration of the set of soil, min (tab. 3.2)

TP - time spent on switching speeds (tab. 3.2)

 $l\Gamma, l\Pi$ - estimated distance of movement with cargo and empty, m

V Γ , VP - accordingly, the speed of the bulldozer in the loaded state and Empty, m / min (tab. 3.2)

$$Pa = \frac{60 * t * q * \alpha * k_b}{T_n + T_p + \frac{l_g}{V_g} + \frac{l_p}{V_p}}$$

(2)

Excavator selection

Excavation is carried out by an excavator equipped with a reverse

A shovel with unloading of soil in dump trucks and with partial dumping in a dump. We select 2 excavators with a direct shovel with a bucket with teeth with a bucket volume 1m3 and 1.25 m3 and perform a comparison.

Specifications are shown in Appendix B.

H1bp = 2.8 - the rate of time of the mechanism during operation will sweep (mash-hour). (ENiR2, issue 1).

 $H_{2Bp} = 3.5$ - the rate of time of the mechanism when loading soil into vehicles. (ENIR 2, issue 1).

I. Komatsu PW 130-ES-6 Excavator

1. Set the cost of developing 1 m of soil in the pit for this type Excavator (tg)

$$C = \frac{1.08 * C_{mash.smen}}{P_{sm.vir}} = \frac{1.08 * 14400}{259} = 60Tg$$

Where 1, 08 - coefficient taking into account overhead costs

Smash.smen - the cost of an excavator machine shift

Psm.vyr. - shift excavator excavation, taking into account the development of soil into the dump and vehicles.

3. Interchangeable excavator excavation, taking into account the development of soil, will be swallowed, and with loading into vehicles

$$P_{cm.vir} = \frac{V_k}{\sum P_{mash.smen}} = \frac{7518}{29} = 259M^3/smen$$

4. The total number of machine tools of the excavator during operation will be piled and loaded onto transport

$$\sum P_{mash.smen} = \frac{V_{sample} * n^{1}_{vr} + V_{out} + n^{2}_{vr}}{8.2 * 100} = \frac{3932 \cdot 2.8 + 3586 * 3.5}{820} = 28.7 = 29$$

Where H1Bp = 2.8 - the rate of time of the mechanism during operation will sweep (machine-hour). (ENiR 2, issue 1).

 $H_{2BP} = 3.5$ - the rate of time of the mechanism when loading soil into vehicles. (ENIR 2, issue 1).

5. Determination of capital specific investment for the development of 1 m3 of soil for each given type of excavator (tg / m3)

Kod =
$$\frac{1,07 \cdot Cer}{\Pi cm. vir \cdot tyear} = \frac{1,07 \cdot 109800}{259 \cdot 300} = 1.5 \, тg/m3$$

6. Determination of reduced costs for the development of 1 m3 of soil for this type of excavator

En - the normative coefficient of efficiency of capital investments is 0.15

II. Hitachi 450-3 Excavator

1. Find the development price of 1 m of soil in the pit for this type of excavator (tg)

$$C = \frac{1,08 \cdot \text{Cmash. smen}}{\Pi_{\text{CM. vir}}} = \frac{1,08 \cdot 20000}{259} = 83.3 \text{ rg}$$

1, 08 - coefficient taking into account overhead costs

Smash.smen - the cost of an excavator machine shift

2. Interchangeable excavator excavation, taking into account the development of soil, will be swallowed, and with loading into vehicles

$$P_{cm.vir} = \frac{V_k}{\sum P_{mash.smen}} = \frac{7518}{29} = 259M^3/smen$$

3. The total number of machine tools of the excavator during operation will be piled and loaded onto transport

$$\sum P_{mash.smen} = \frac{V_{sample} * n^{1}_{vr} + V_{out} + n^{2}_{vr}}{8.2 * 100} = \frac{3932 \cdot 2.8 + 3586 * 3.5}{820} = 28.7 = 29$$

Where H1Bp = 2.8 - the rate of time of the mechanism during operation will sweep (machine-hour). (ENiR 2, issue 1).

 $H_{2BP} = 3.5$ - the rate of time of the mechanism when loading soil into vehicles. (ENI R 2, issue 1).

7. Determination of capital specific investment for the development of 1 m3 of soil for each given type of excavator (tg / m3)

$$\text{Kod} = \frac{1,07 \cdot \text{Cer}}{\Pi_{\text{CM}}, \text{vir} \cdot \text{tyear}} = \frac{1,07 \cdot 109800}{259 \cdot 300} = 1.5 \text{ rg/m3}$$

5. Determination of reduced costs for the development of 1 m3 of soil for this type of excavator

Pd=C+En·Kod=83.3+0, 15·1.5=83.3 Тg/м3

Where En - the normative coefficient of efficiency of capital investments is 0.15 As a result of comparing two excavators, the Komatsu PW 130-ES-6 excavator has a low reduced cost compared to the Hitachi 450-3, so we choose the Komatsu PW 130-ES-6 excavator

3.4 Selection of special equipment

Determining the number of dump trucks

The export and transportation of the pound being developed by excavators will be performed by dump trucks. Depending on the transportation distance (3.0 km), we select a truck capacity of 10 tons, at Vk = 0.5 m. For a 10-ton truck capacity, we select a HOWO ZZ3161M4011 dump truck. Find the required number of HOWO ZZ3161M4011 dump trucks:

Find the volume of soil in a dense body in the bucket of an excavator:

Kod =
$$\frac{V_{\text{KOB}.* \text{ KHan.}}}{\text{Knp} + 1} = \frac{1.14 * 0.8}{1 + 0.26} = 0.72 \text{ M}3$$

Where Knap - bucket filling ratio (for an excavator with a backhoe) equal to 0.8); KPR is the coefficient of initial loosening of the soil.

Find the mass of soil in the bucket of the excavator:

Where V - Bulk soil mass, t / m3.

Determine the number of soil buckets loaded into the dump truck body:

$$n = \frac{P}{Q} = \frac{10}{1.3} = 8$$

where P - Truck capacity, t.

Find the volume of soil in a dense body loaded into the body of a dump truck:

Find the duration of one cycle of the truck:

$$T_{II} = t_n + \frac{60*L}{V} + t_p + t_m + \frac{60*L}{V} = 20.7 + \frac{60*4}{20} + 0.8 + 1.12 + \frac{60*4}{40} = 40.6 \text{min}$$

Where tπ - soil loading time, minutes;

$$Tp = \frac{V * HBP * 60}{100} = \frac{5,76 * 6 * 60}{100} = 0,72M3$$

Where H_Bp - the norm of machine time according to ENiR-2-1-11 for loading an excavator with 100 m3 of soil into vehicles;

L = 4 - distance of soil transportation, km;

Vg - average speed of a dump truck in a loaded state, km / h

 $V\pi$ - the average speed of the dump truck in the empty state (35-45 km / h);

tP - unloading time, minutes = 0.8 min;

Tm is the time of auxiliary operations.

Determine the required number of dump trucks:

$$N = \frac{Tc}{Tn} = \frac{40.6}{20.7} = 1.9 = 2$$

3.5 Selection of soil compacting machines

Fake soil compaction is developed to increase stability, reduce rainfall, and increase the water tightness of an earth structure. We select the sealing method by rolling and for the length of the sealing strip more than 30 meters we select the roller with the RT56-SC remote control system.

Table 5 - Specifications for RT56-SC	
Mark of car	RT56-SC
Characteristic	Remotely controlled
Mass, TN	1,391
Overall dimensions (DxSxV), mm	1855x560x1230
The thickness of the sealing layer, mm	300-400
The maximum condensed area, m2 /	668
hour	
Max speed, m / min	40

The choice of methods for transportation, supply, laying and compaction of concrete

Modern construction cannot be imagined without special equipment and machines, which should provide construction sites with the necessary materials, solutions, mixtures. One of them is a special technique - a concrete pump, which serves to supply freshly prepared concrete mortar. A concrete pump is a concrete pump mounted on a car chassis and is intended for supplying concrete mix to the place of its placement along the concrete conduit in both vertical and horizontal directions. Concrete pumps provide high-quality concrete laying, increase labor productivity and reduce construction time. In the modern market of concrete equipment, concrete pumps with distribution booms of 21, 24, 28, 37, 39, 42, 47 meters and above, which can rotate 360 degrees around the vertical axis, are now presented.

For the supply and laying of concrete in the construction, the automobile concrete pump 58152A is used.

Choice of mounting crane.

The choice of the type of crane to find a solution based on the size and configuration of the building to be lifted, the dimensions of the construction site, the sizes and weights of the structures to be mounted, layouts and their installation methods.

Required tower crane hook height

 $H_{mr}^{kr} = h_0 + h_a + h_z + h_s = 2206 + 0.4 + 0.5 + 2.025 = 25.525M$

Where H_{mr}^{kr} - the distance from the parking level of the crane to the bottom of the hook with a minimum tight pulley block;

H0 - excess of the support of the mounted element over the parking level mounting crane;

Ha is the height of the element in the mounting position;

hz - the height margin required by the installation conditions for the factory structures to the place of installation or transfer through previously mounted construction (0.5m);

hs - Sling height in working position from the top of the mounted element to the crane hook.

Required boom reach

$H_{cmp}^{mp} = 65M$

We select the stationary tower crane Liebherr 245 EC-H12. This

The choice is due to the limited area of the construction site.

Liebherr 245 EC-H12 tower crane for mechanization

Construction works during the construction of residential, civil and

Industrial buildings and structures of increased number of storeys.

Economic indicators.

Prime cost mash-cm - 28.86tn

Crane operating time in a year - 3075 hours

Estimated inventory value - 42300tn

Cost of installation 1000 kg of structure

$$c_e = \frac{1.08 \sum S_{mash-cm} + 1.51.08 \sum Z_{sr}}{P_{N.cm}} = \frac{6,2295,186,2808,1}{86.8} = 4.42 \text{ TN/T}$$

Where 1, 08 and 1, 5-co-factors of overhead costs according to the operation of the machines and the wages of installers.

 $\sum S_{mash-cm}$ - The cost of a crane machine for a given flow, TN.

 $\sum Z_{sr}$ - The average wage of shift workers engaged in installation constructions

 $P_{N.cm}$ - Regulatory shift operation of crane performance on installation of structures of this flow, t / cm

$$P_{N.cm} = \frac{P}{n_{mash.cm}} = \frac{14909}{78.26} = 190.5 \text{ T/cm}$$

Where P is the total mass of elements in the flow in question, t

 $n_{mash.cm}$ - The number of crane machine-changes for mounting structures of this flow, mash shifts.

Specific capital investment.

$$k_{od} = \frac{C_{er} * t_{sm}}{P_{n.sm} * t_{year}} = \frac{42300 * 8.2}{190.5 * 3075} = 0.6 \text{ Tn/t}$$

where Cer - Inventory-estimated cost of the crane, t

 t_{sm} - The number of hours of operation of the crane per shift, tcm= 8.2h t_{year} - The standard number of operating hours of the crane per year, h Unit Rates

$$C_{etc.od} = C_e + E_n * K_{od} = 42.4$$

Where Ce- Cost of installation of 1 ton of structure (t / t)

En- Standard coefficient of economic efficiency of capital investments, En 2

= 0.12

Kod- Specific capital investments, (tn / t) Determination of the danger zone of the crane.

$$R_{0.z} = R_{max} + 0.5I_{max} + I_{wo}$$

Where Rmax is the boom reach;

lmax - maximum length of the mounted element;

 $lwo = 0.4 \cdot Hzd;$

Ro.z=65+0, 5·6, 0+0, 4·22, 6=27, 7 м;

The area of impact of the crane is equal to the maximum outreach of the crane: Rmax = 65m

3.6 The aboveground part. Scoping

Formwork: Large-panel formwork: Floor slabs:

S=L*B= 552*4+468*3+676*1+270*3+582*7+419*2+386*2=10782 м**2** Small panel formwork:

Doorways:

S=0.49*2.2*2*150=323.4м**2**

Window openings:

S=0.49*1.3*2*175=222.95 м2

TOTAL: 546.35 m2

Support device, racks:

n=10*S/4=552/4*4+468/4*3+676/4*1+270/4*3+582/4*7+419/4*2+386/4*2=2694 pc (Number of racks)

L=552/4*3.3*4+468/4*3.3*3+676/4*3.3*1+270/4*3.3*3+582/4*7*3.3+419/4*3. 3*2+386/4*3.3*2=8892.9 м

Beams device:

29*60+20*69+ (4*30+10*12) *3*5+6*18*2*9+ (4*30+10*12)*4=10084 pc L=9264*3=28921 м.

TOTAL: 37813 m, 12778 pc

Reinforcing work.

Installation of reinforcing meshes of the framework of floors and coatings. Size 1 grid 6 m2. Plates are reinforced above and below.

n=552/6*2*4+468/6*2*3+676/6*2*1+270/6*2*3+582/6*2*7+419/6*2*2+386/6*2*2=4210 pc.

Installation of reinforcing bars.

 $p = \frac{m}{v} \rightarrow m = p * V$

m=2.4*(552*4+468*3+676+270*3+582*7+419*2+386*2)*0, 22=6100 т.

(Mass of concrete) mapм. =244 т.

First, we determine the mass of concrete, 3-5% is reinforcing bars.

Concrete works.

Laying concrete mix in coatings and floors:

V = (552*4+468*3+676+270*3+582*7+419*2+386*2)*0, 22=2366 M3

Formwork:

Formwork dismantling:

Large-panel formwork 10782 m2

Small-panel formwork 546.35 m²

TOTAL: 11328 m2

Dismantling racks and beams:

L = 37813m

The definition of complexity and costing labor

Kner = Nmax / nav <1.5, Kner = 36 / 25.21 = 1.42 <1.5 - the condition is satisfied; nmax = 36 people

Table 6	- Tee	chnical	and	economic	indic	ators (FEP of	the p	roject)

Indicators	Units rev. Qty
Duration	Days 430
Total labor input	Chel-dn / Mash- 10844
	cm

3.7 Safety and environmental protection

Things for the installation of floor slabs are implemented in compliance with the requirements of the joint venture of the Republic of Kazakhstan. "Labor protection and safety in construction".

It is not allowed to perform installation work at a height in open places at a wind speed of 16m / s or more, with sleet, thunder and fog, which excludes visibility within the boundaries of the work front. Accepting from the second floor must put portable

inventory fencing on the outline of the building and the opening.

When moving the slab, the installers must be located outside the line of the found slab on the opposite supply side. Plates must be placed without jerks, prohibiting strikes on other structures.

Installers must not walk along the ends of wall panels.

The installers receive the main mounted floor slab from the stairs. The preceding slabs are mounted from the inserted floor slabs.

An electrician welder performing work on welding units for fixing reinforced concrete structures is required to master the certification in accordance with the "Welder Certification Rules" approved by the State Technical Supervision of the Republic of Kazakhstan and have an electric welder certificate.

It is forbidden to place inflammable materials in a radius of 11 m from the place of electric welding.

It is forbidden to generate electric welding work in unprotected points during rain, thunderstorms or heavy snowfall, as well as at heights with a wind speed of 16 m / s or more.

Welders' workstations must be isolated from adjacent workstations and passages by fireproof screens (screens, shields) with a height of at least 1.7 m.

It is forbidden to combine welding work and laying a heat-insulating liner at one working point.

Boxes with the solution should be determined only at the points of contact of the floor slabs to each other, i.e. over the panels of the inner walls.

When organizing works on the installation of structures, it is necessary to strictly monitor the implementation of complete labor protection measures, since these works, consisting in the movement of difficult and large-sized elements in space and associated with the dense location of the installers at high heights, can lead to severe safety failure industrial injuries. The installation work project provides for the unification of workplaces, methods and procedures for performing technological operations that ensure the safety of workers.

When completing the brigade, it should be borne in mind that workers who are at least 18 years old, possessing the qualification of an installer of at least the second category, experience in climbing the at least a year and undergoing medical examination are allowed to conduct independent installation works at a height of more than 4 m.

Installers who do not have the experience of climbing work shown are allowed to work at heights during the year only under the subordination of workers of larger ranks set by order of the head of the construction organization.

When combining work in multi-storey buildings, it is forbidden to allow people to be on the floors (tiers) over which installation is being carried out. For lifting and lowering, labor during the construction of buildings and structures with a height of more than 25 m, it is necessary to use lifts and or elevators. Stairs (brackets) for lifting workers to a height of more than 5 m are equipped with devices for fastening the safety belt or metal arcs with vertical ties. The rise of labor on hinged stairs to a height of more than 10 m is skipped, provided that the rest areas are provided 10 m in height.

Placing the crane supply, assign a danger zone during the operation of the crane. Its dimensions are equal to the outreach of the crane jib plus 8 m with a hook lifting height of up to 25 m and plus 10 m with a hook lifting height within 25-105 m. The limits of a serious zone are marked with warning signs or enclosed. When designing a schedule, installation of works must take into account probable weather situations, since installation works are carried out with a wind strength of up to 6 points (installation of panels without openings - with a wind strength of up to 4 points) and interrupted during ice, thunderstorms and heavy snow and rain.

6. Economic part

Estimated cost of a construction project is the sum of all cash costs necessary for the construction of a project.

The estimated construction price is the basis for determining the amount of investment funds for construction, the formation of costs for construction products, serves as a guide for the procurement of contracting construction services by the customer and the conclusion of a contract agreement.

The estimated price for the construction of buildings and structures of the main and auxiliary directions is determined on the basis of aggregated estimated standards in 2001 prices, taking into account the correction factor (K1) in accordance with the construction area defined by the design assignment.

The estimated price is the basis for the size distribution of solid investments, financing the construction process.

In my thesis, the following types of budget documentation are shown:

- Local estimate - the primary document in the estimate, which is compiled on the basis of the volumes and costs of the projected building. The local estimate of the diploma project is given in the appendix.

-Vendome of volumes of labor

- A summary of the volume of construction and the cost of work, reflecting the cash costs for the sections of the estimated calculation. Given below.

- Resource estimates. Attached

Estimation was carried out using the program complex ABC-4

For the implementation of the investment project, it is proposed to use borrowed funds. But at the same time, according to the legislation of the Republic of Kazakhstan, 15% of the total amount of investments must be financed from personal funds.

CONCLUSION

As a result of the work done, a graduation project was implemented on the theme "Specialized boarding school for 1200 places in the city of Turkistan"

The architectural and construction share of the project reflected volumetric planning and constructive solutions, performed a heat engineering calculation of the exterior structures and building coatings.

The calculation part was the calculation of a monolithic reinforced concrete column and crossbar. The calculations were carried out both in the Etabs software package and in the manual calculation. The design of these elements was carried out selection according to the results of calculations of the reinforcement, and how much reinforcement is necessary for the structural strength

In the section of technology and organization of construction production, such works were performed as the calculation of the underground part of the building earthworks and concrete, reinforcing, economically advantageous machine mechanisms were selected, labor costing was compiled, based on this a schedule was developed. The technological map is developed.

The section on safety and environmental considerations discusses the conditions and rules for conducting construction work, as well as ways to reduce the negative impact of work on the environment.

LIST OF REFERENCE

1. Kazbek - Kaziev Z.A. Architectural constructions. Higher School, 1989. Access Mode:

http://books.totalarch.com/architecturalconstructions-kazbek-kaziev

2. SN RK 3.02-06-2018 "Designing of hotels" Access mode:

https://online.zakon.kz/document/?doc_id=39059156#pos=0;0

3. SN RK 3.01-01-2013 "Urban planning. Planning and development of urban and rural settlements." Access Mode:

https://www.egfntd.kz/rus/page/NTD_KDS_SNRK

4. SN RK 3.02-07-2014 "Public buildings and structures." Mode access: https://online.zakon.kz/Document/?doc_id=35661416

5. SP RK 2.04-01-2017. Construction climatology / Committee on Construction Affairs of the Ministry of Economic Development and Trade of the Republic of Kazakhstan. - Astana.:, 2018. Access mode:

https://online.zakon.kz/Document/?doc_id=33546556

6. SP RK 2.04.107-2013. Construction heat engineering / Committee on Construction Affairs of the Ministry of Economic Development and Trade of the Republic of Kazakhstan. - Astana.:, 2019. Access mode:

https://www.egfntd.kz/rus/page/NTD_KDS_SPRK

7. SNiP 2.01.07-85 * "Loads and impacts". Access mode:

http://docs.cntd.ru/document/5200280

8.http://www.belgut.ru. Metal constructions. / Ed. E.I.

Bleached. - Moscow: Stroyizdat, 1986. Access mode:

http://belgut.ru/uchebnik/370metallicheskie-konstrukcii-pod-redakciey-belenya-e-i.html 9. SNiP RK 5.04-23-2004. "Steel structures." Access mode:

https://online.zakon.kz/Document/?doc_id=30013923

10. Baykov V.N., Sigalov E.E. Reinforced concrete structures: General course:

Textbook for universities. - 5th ed., Revised. and add. - M .: Stroyizdat, 1991 .-- 767.

Access Mode: http://elima.ru/books/index.php?id=582

11. Mandrikov A.P. Examples of calculation of reinforced concrete structures:

Textbook allowance for builds. technical schools for special. "Prom. and citizen. production ". - M .:

Stroyizdat, 1979.- 419 p., Ill. Access Mode:

http://elima.ru/books/index.php?id=673

12. A guide for the design of concrete and reinforced concrete structures of heavy and lightweight concrete without prestressing. (to SNiP 2.03.01-

84). Access Mode: https://dwg.ru/dnl/10237

13. SNiP 5.03.34.2005 * "Concrete and reinforced concrete structures". Access Mode: http://www.cbs-atyrau.kz/5-03/

14. SN RK 5.01-02-2013. "Foundations of buildings and structures." Mode access: https://online.zakon.kz/Document/?doc_id=37929998

15. SP RK 2.02-20-2006 Guide "Fire safety of buildings and

facilities "; Access Mode: https://online.zakon.kz/document/?doc_id=30187129 16. SN RK 1.03-05-2017 "Labor protection and safety in

construction "; Access Mode: https://bestprofi.com/document/1512208772?0 17.O.O. Litvinov "Technology of building production", Kiev, Vishka Shkola Publishing Association, 1985. Access mode: http://www.bibliotekar.ru/spravochnik-161-stroitelnye-tehnologii/

18. Khamzin S.K., Karasev A.K. "Technology of construction production. Course and diploma design ", Moscow," Higher School ", 1989. Access Mode: https://dwg.ru/dnl/2950

19. http://financepro.ru. Dickman L.G. "Organization of construction production" 6th edition Publishing House of the Association of Construction Universities, 2006 -608s. Access mode: https: //www.studmed.ru/dikman-lg-organizaciya-stroitelnogo proizvodstva_d1211311185.html

20. ENiR E2-1 "Issue 1 Mechanized and manual excavation";

Access Mode: http://www.gosthelp.ru/text/E21Vyp1Mexanizirovannyeir.html

Application A

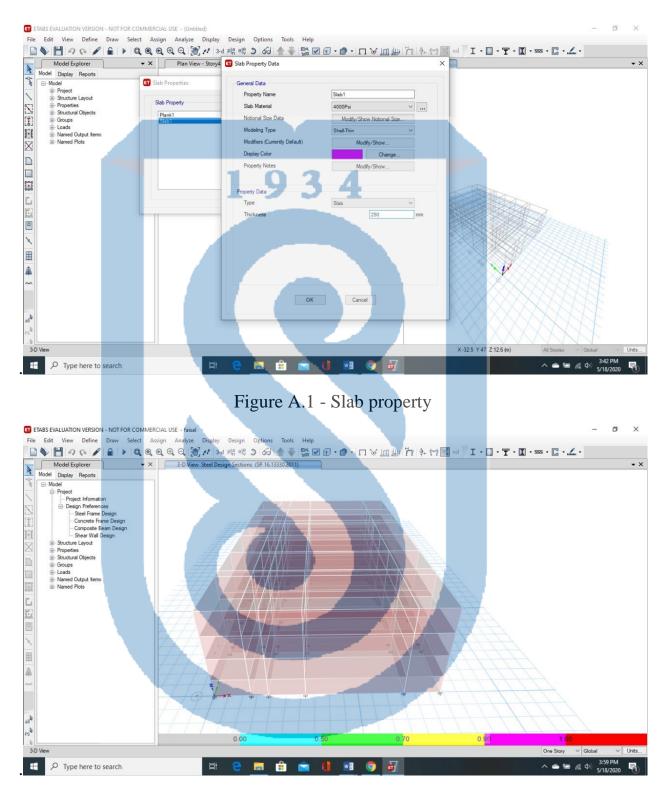


Figure A.2 - 3-D view steel design sections

Continuation of application A

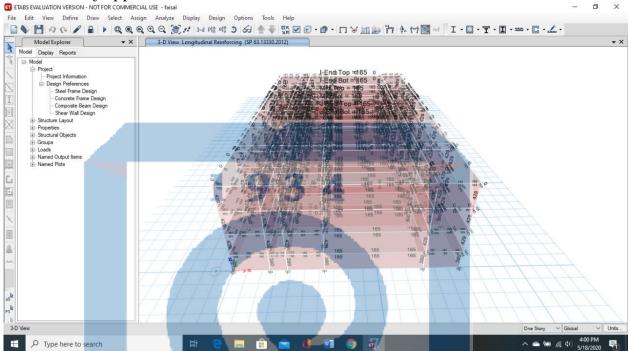


Figure A.3 - 3-D view longitudinal reinforcing.

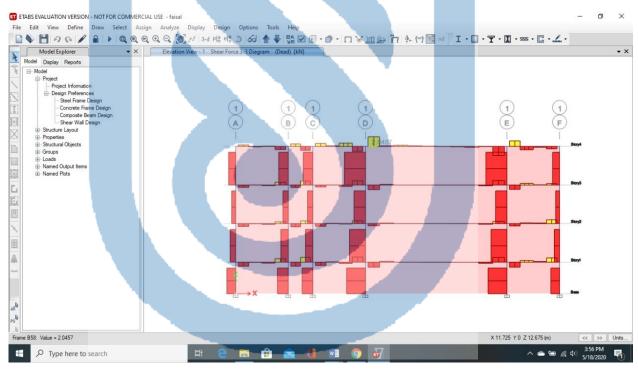


Figure A.4 - Elevation view.

Continuation of application A

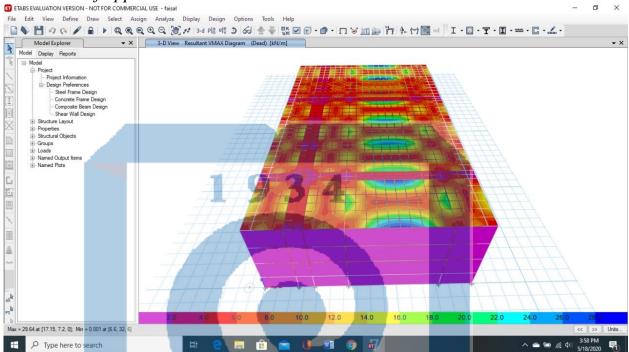


Figure A.5 - 3-D view Resultant VMAX diagram.

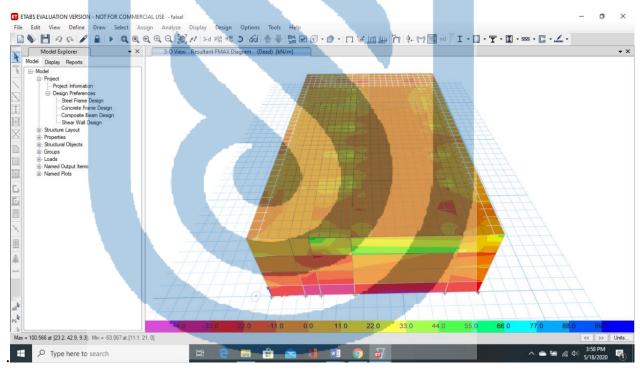


Figure A.6 - 3-D view Resultant FMAX diagram

		Es	stimated Cost stimated Salary formative Labor Input			Applicati Estimati ESTIMAT Local cost e	on ION No. estimate) 5445					
No. p / p	Norm code, resource code	Name of work and costs	unit of measurement	amount per unit of measure	on the project	Unit cost, Total salary of construction workers	tenge machine operation including salary drivers	Total salary of construction workers	Total cost, teng machine operation n including salary drivers	equipment, furniture, inventory	Overhead, tenge Estimated profit, tenge	Total cost with NR and SP, tenge
1	2	3	4		5	6	7	8	9	10	11	12
1	Excav E11- 010102- 0302	vation Soils of 2 groups. Development with loading onto dump trucks with excavators with a bucket with a capacity of 1 m3	m3 of soil	2610		174.88 7.94	166.85 61.46	456434 20710	435465 160411	259	130407 46947	633788

					1	93	4					
2		Soils 3 groups. Development with loading onto dump trucks with excavators with a bucket with a capacity of 1 m3	m3 of soil	1200		218.00 9.89	207.99 76.61	261598 11868	49582 11937	148	74739 26907	363245
3	E11- 010102- 0304	Soils 4 groups. Development with loading onto dump trucks with excavators with a bucket with a capacity of 1 m3	m3 of soil	719.3		286.77 13.00	273.63 100.79	206273 9347	96819 2501	107	58931 21216	286420
4	E11- 010205-	Soils 4 groups. Manual			80.7					-		

<u> </u>	0704 d	1	n3 of soil									[[]	
		1	15 OI SOII										
		(revision) in				-	8475.46	2492.00	683970	201104		460123	1235620
		renches and					5983.46	1935.50	482865	156195		91527	
		pits with a					5765.40	1755.50	402003	150195		91527	
		epth of more											
		an 3 m with a											
	CI	rane lifting if											
		there are											
		fastenings											
5	E11- 7	The bottom	m2										
		nd slopes of	planned	oh									
		e recesses of	surfac	e									
		ne channels.											
		anual layout. oil group 4		16	75		318.53	-	533534	-	_	384145	991094
		ion group 4											
									· · ·				
1	2	3		4		5	6	7	8	9	10	eleven	12
							318.53		- 533534	-		73414	
6	E11-010201-	Soil 3, 4 group	ns	m3	151.5	-	182.07	82.09	27583	12437		15412	46435
0	0502	Pneumatic ram	-	ompacted	151.5	r -	102.07	02.07	27505	12437		13412	+0+33
			er er	soil							-		
							99.98	41.31	15146	6259)	3440	_
							77.70	11.51	10110	0207		5110	
S	ecuring the slope	es of the pit with	shotcrete	e 75 mm.									
7	E11-060301-	Installation of s	steel		3.6748		572263.22	21234.54	2102953	78033	1762705	267414	2559996
1	0406 inch	structures remain											1
	0100 men						71254 05	0/11/0	1 2(22)15		1		
	0 100 men	in the concrete b	body	14			71354.95	8611.69	262215	31646		189629	
		in the concrete b	body	1t			/1554.95	8011.09	202215	31646		189629	

			1			1	0.2							
8	\$121-050301- 3202	Hot-rolled reinforcing steel of a periodic profile of class A-III (A400) with a diameter of 14 to 32 mm ST RK 2591-2014		t		3.6748	192229.00		706403	-	-	706403	- 56512	762915
9	E11-290159- 0102 including Sat. 29p.1.1	Shotcrete of a reinforced surface with a coating thickness of 30 mm		m2		675	4562.86 3204.00	1336.09 698.69	3079932 2162700		01861 71614	15371	2897745 478214	6455891
10	0103 Including Sat.29p.1.1 K = 4,5	Surface. Shotcrete. add, for every 10 mm, changes in the thickness of the shotcrete layer of a concrete or reinforced surface to the standards 1129-0159-0101, 1129-0159-0102	m2	surface	2	675	1354.48	880.05	914274	59	94033	21	799660	1851049
							474.12	602.86	320031	4(06933		137115	

						1			- 1		1
11		Single woven steel									
	0225	nets of galvanized									
		wire, 2 mm in		10.00	0.2						
		diameter, mesh side		1	93	4					
		size 50 mm GOST	m2	_	503.00	-	31437 5		- 314375		339525
		5336-80	1112		505.00		514575		- 514575	-	339323
		3330-80			-	-		-	-	25150	
										20100	
				625							
				025							
12	S121-020101-	Heavy concrete /									
	0601	GOST 7473-94 /									
		class B15 / M-200 /	m3	50.5	12880.00		65172 8		- 651728	-	703866
				50.6						52138	
								-	-	52138	
			_								
13	The commercial										
	offer of	1000K-Pla concrete									
	NEOSTRIM	mortar									
	LLP, ref.										
	LLI, ICI.										
	No. 61 dated										
	10/20/17.										
	10/20/1/1			254.2	4.40.00		150207		150207		172072
			1	354.2	449.82	-	159327		- 159327	-	172073
									_	12746	
									-	12740	
								(
1.4	The commercial	MasterReock SA	_								
14											
	offer of	167 - High-									
	NEOSTRIM	performance									
	LLP, ref.	alkaline-free setting									
	7	accelerator for fast									
	No. 61 dated										
		application of				-			-	-	
								1			

	10/20/17.		e spray- crete	kg	1700.2	882.14 93 -	4 -	99819			19 119986	1619805
Ir	stallation and	d dismantling e (L-1500p.m.)	of the pit							_		
15	E11-01020 0303	manuall concrete 0,2 0.2 m.),	nent of soil y under a e side (h- m, b- In soil of roup	m3	6	2648.64		5892			-	29521
1	2	3	4	5		7	8	9		10	eleven	12
16	010205- 0502 dite Fil	Trenches, sinuses of foundation ches and pits. ling by hand. Soil group 2	m3 of soil		2648.64 858.28 858.28		15892 858 858		-	-	2187 618 118	1594
17	010205-	anual loading of consolidated		6		-	4243	3	-	_	3055	7882

soil from piles	m3		707.16							
and dumps into			707.16		4243		-		584	
vehicles, soil group 3			1	93	4					
group 5										
341-Transportation0102-of construction										
016 materials by										
dump trucks			200.00		5005					
outside quarries.	t		386.00		5095		-		-	
Payload 15 t. Cargo class 1.			-		-		-		408	
Transportation										
distance										
16 km										
		13.2								5503
11- Work on a dump 0102- 2-3 groups of										
0102- 2-3 groups of 602 soil	m3	6	19.67	16.50	118	ģ	99	1	43	174
		0	3.07	6.92	eighteen	4	42		thirteen	174
11- The device of										
101-reinforced120concrete strip										
foundations with										
a width e on top of up to 1000	m3		21009.37	1964.65	252112	23576	1	77949	50535	326859
mm - a concrete		12	4215.60	412.14	50587	4	946		24212	

		side (h-0.5m, b-											
		0.2m.)				1	93	4					
21	\$121- 050301- 3001	Hot-rolled smooth reinforcing steel, class AI (A240), diameter from 6 to 12 mm, ST RK 2591-2014	t	0.032032		-		-		-	6352	- 508	6860
22	E11- 090305- 0401	Installation of fences	t	0.79508		110830.52 101 291 .50	1495.78 477.74	88119 80535		1189 380	6395	55831 11516	155466
23	\$121- 060801- 0102	Separate structural elements of buildings and structures with a predominance of hot-rolled profiles, weight from 0.1 to 0.5 t	t	0.79508		415475.00		330336		-	330336	- 26427	356763
24	E11- 460401- 0102	Foundations are concrete. Disassembly	m3		12	17269.81 9684.17	7585.64 3754.48	207238 116210	91028 45054		-	135462 27416	370115

	S341-	Construction													
-	310104-	garbage.	+	41.1		77.00			2310		-			-	2495
	0501	Loading	t	thir	LY .	77.00	0 2		2310		-			-	2495
						1-	7 3	4	-		-			185	
	S341-	Transportation													
0	020102-	of construction													
	1027	materials by													
		dump trucks													
		outside quarries.	t		5	586.00		17580			-			-	18986
		Payload 15 t.			-	-	_		-		-			1406	
		Cargo class 1.												1100	
		Transportation													
		distance													
		27 km													
				thir	ty										
27	E11-	Soils of 2													
(010102-	groups.													
	0302		m3												
		with loading on	of												
			soil		1	74.88	166.85		1382		1318		1	395	
		trucks with			-	7.94	61.46		63		486			142	
		excavators with				7.94	01.40		05		400			172	
		a bucket with a													
		capacity of 1						1							
		m3, / low													
		compressible													
		soil /													
				7.9											1918
1	2		3			4	5	6	7	8		9	10	eleven	12

28	S341-	Transportation of cons	tenation								6257
20	020102-	-									0237
	1016	materials by dump truck									
		quarries. Payload 15 t. Ca	-		93	34					
		Transportation dist	ance	t 01/		386.00		5794			
		16 km		t 01/	15	380.00	-	5794	-		-
					-	-	-	-		464	
29	E11-	Trenches, sinuses of	m3 of soil		858.28		678				12595
	010205-	foundation ditches and				-	0	-	-	4882	
	0502	pits. Filling by hand. Soil			858.28		678	-		933	
		group 2					0				
				7.9							
		Excavation pit excavation								11	
30	E11-	Soils 4 groups.									
	010102-	Development with loading									
	0304	onto dump trucks with	m3 of								
		excavators with a bucket	soil				960	916			
		with a capacity of 1 m3			286.77	273.63	7	6	6	2745	13339
					13.00	100.79	435	337		988	
				22.5	10100	100112	100	7			
				33.5							
31	E11-	Soils 4 groups. Manual									
	010205-	development (revision) in									
	0704	trenches and pits with a	m3 of								
		depth of more than 3 m	soil					772			
		with a crane lifting if there	5011		8475.46	2492.00	26274	5	-	17675	47465
		are fastenings		3.1	5983.46	1935.50	18549	600		3516	

32	E11- 010107- 1804	The bottom and slopes of the recesses of the channels. Manual layout. Soil group 4	m2 planned o surface		55.2	3 18.53 318.53		17583 17583		-		12660 2419	32662
33	E11- 010201- 0502	Soil 3, 4 groups. Pneumatic ram seal	m3 compacted soil	d	2.76	182.07 99.98	82.09 41.31		503 276	227 114	-	281 63	
34	S341- 020102- 1016	Transportation of construction materials by dump trucks outside quarries. Payload 15 t. Cargo class 1. Transportation distance 16 km	t	01/	15	386.00			579 4	-		- 464	
35	E11- 010102- 0303	Soils of 2 groups. Development with loading onto dump trucks with excavators with a bucket with a capacity of 1 m3, / low compressible soil /	m3 of soil	17	60	218.00 9.8 9		383677 17406		366054 134840	217	10961 8 39464	532759

36	S341-	Transportation of		1							
50	020102-	construction materials by									
	1016	•									
		dump trucks outside			Q 2	ζ Δ					
		quarries. Carrying capacity	t	3344	386.00		129078				1394047
		15 t. Cargo class 1.		5544	380.00		4			_	1394047
		Transportation distance 16					T				
		km			-		-	-		10326	
										3	
37	E11-	Soil 3, 4 groups. Pneumatic	m 3		182.07	82.09	32044	14449		17904	53944
	010201-	ram seal	compacted						_		
	0502		soil	176	99.98	41.31	17596	72		3996	
				176				1			
38	E11-	Priming. Compaction of									
	010201-	self-propelled vibratory	m3								
	0304	rollers 2.2 tons. First pass	compacted								
		on one track with a layer	soil								
		thickness of 40 cm		1584	42.49	42.49	67304	67304	-	20327	94641
						17.82	-	28232		7010	
1	2	3	4	5	6	7	8	0	10	.1	12
1	Z	3	4	3	6		8	9	10	eleven	12
39	E11-	Priming. Compaction of									
	010201-	self-propelled vibration	m3								
	0310	rollers 2.2 tons. For each	compacted								
	K = 6	subsequent pass along one	soil								
		track with a layer thickness		1584	26.67	26.67	42245	42245	-	12665	59303
		of 40 cm			-	11.10		17590		4393	
										1375	
10	F11	7791 1 6 1 1		17(0	01.27	60.00	142216	101005		22.410	100 50 5
40	E11- 010201-	The soil of embankments is		1760	81.37	68.92	143216	121295	528	32419	189686
	010201-	compacted. Watering	compacted soil						0		
	0001		5011		9.4	16.13	16641	28386		14051	

					6							
41	E11- 260101- 1101	The surfaces are flat and curved. Insulation with mineral wool stitching mats and without fiberglass or metal mesh lining, mineral wool slabs on a synthetic binder grade M-125, semi-rigid slabs of glass staple fiber on a synthetic binder	m3 insulation	Ι	9 20017.4 6 18618.4	1382.78	600524 558552	41483		489	43987 2 83232	1123627
				thirty	0	071.22	550552	20227			03232	
42	S121- 110401- 0102	Foam polystyrene boards with flame retardant PSB-S-25 GOST 15588-86	m3	thirty	13371.0 0		401130		-	401130	- 32090	433220
	TOT	AL BASED ON: INCLUDING:	Tenge									544565712
		f construction workers	Tenge				474064 2					
	- opera	ting costs of wave n	Tenge					345649 3				
-	including s	salary machines comrade	Tenge					169443				

								8				
-	Materials, produc	ts and designs	Tenge]	93	34			603860 8	0		
	- Transportation	n of goods	Tenge				132735 7					
	- Overhe	ead	Tenge							6017	7005	
	- Estimated	profit	Tenge							1726	5409	
				Compi	led by Mol	hamma	d Faisal					
				LO	CAL ESTI	MATIC	ON No.	1-1-2				
		Estimated Cost		[]	Local cost		e) 7880657					
Base	2:	Estimated Salar				3430	ind.d			_		
		Normative Labo	or Input		2					-		
				amo	ount	it cost, ter			Total cost, tenge		Overhead, tenge	
No.	Code	Name of work	Uni	t	Total		chine era on	Total	machine opera on	materials		with NR and
p / p	number resource code	and costs	I am	on the o	the sala n the constru- oject on worke	uct di	ary of	he salary construct on workers	including salary of drivers	equipment , furniture, inventory	Es mated profit, tenge	SP, tenge
1	2	3	4		5 6		7	8	9	10	eleven	12

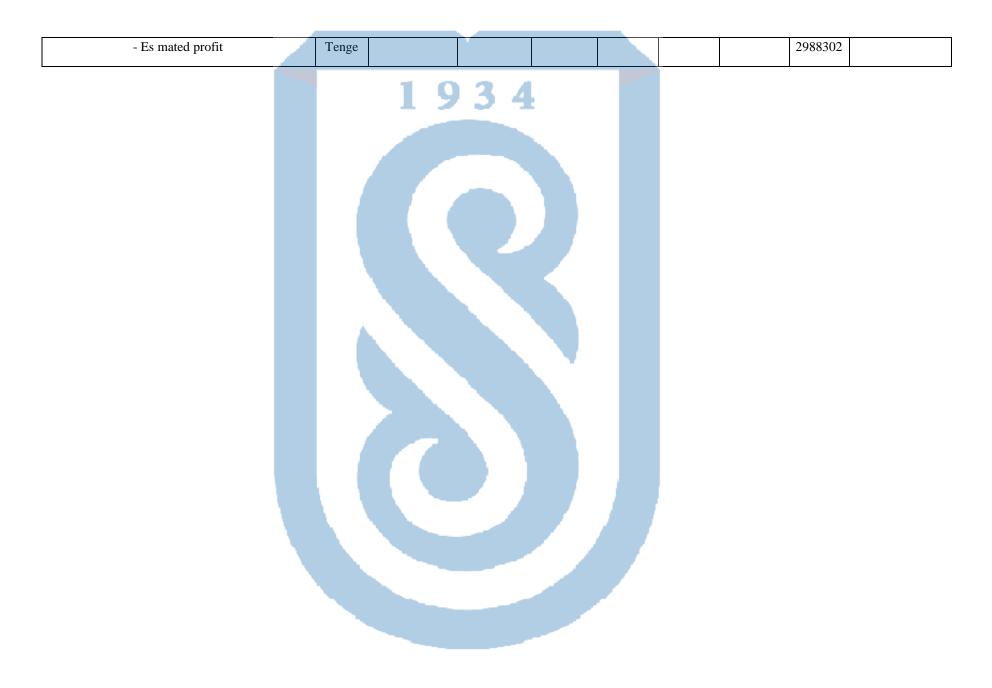
		<i>a</i>							1	1	1 1
1	E11-060101-	Concrete									
	0101	prepare on,									
		B7.5, F100, W4, sulfate resistant.		10.00	0.0						
		Device			17004.25	1087.29	820455	52462	707676	65412	956737
		Device				-					- 1
			m3	48.25	1250.10	239.68	60317	11564		70869	
2	E11-060101-	Reinforced									
-	0115	concrete found on									
	0115	slabs flat, B25,									
		stabs flat, D 25,			20364.30	1667.29	7707888	631070	6327486	814850	9204557
		F200, W4,			20304.30	1007.27	//0/000	031070	0327400	014030	7204337
		sulfate-resistant.			1979.74	386.02	749332	146108		681819	
		Device			1777.74	500.02	747552	140100		001017	
		Device									
			m3	378.5							
3	S121-050301-	Welded									
5	3601	reinforcing steel									
	5001	bar of a periodic									
		profile for									
		reinforced									
		concrete			198058.00		753		753		813
		structures of			198038.00		135	-	755	-	615
		class A500C			_	-	_	-		60	-
		with a diameter								00	
		of 4 to 10 mm									
		GOST R 52544-									
		2006									
			t	0.0038							
			, in the second s	010000							
4	S121-050301-	Welded	t								
	3602	reinforcing steel			_						
		bar of a periodic									
		profile for									
		reinforced									
		concrete									
		structures of									
		class A500C									
		with a diameter		91							9596831
		of 12 to 40 mm		46.29	191925.00	-	8885955	-	8885955	-	2220021

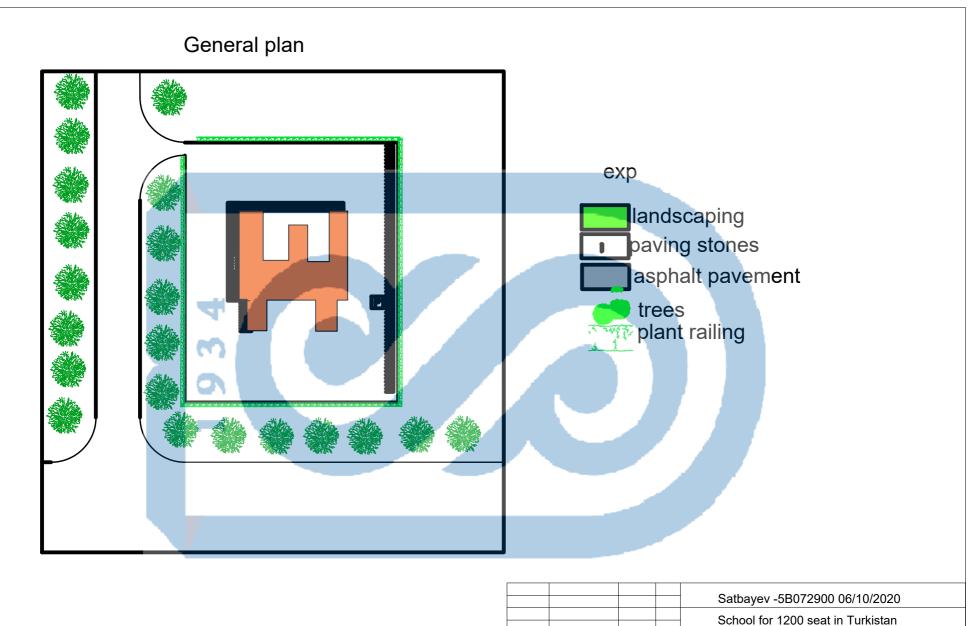
		GOST R 52544- 2006			-	-	-	-		710876	
				1	03	Δ					
5	E11 -060301- 0408	Embedded parts weighing up to	t								
		20 kg / Zd1 /. install on		0.0176	235190.03	1266.03	4139	22	2877	1138	5699
					70470.00	560.82	1240	10		422	
	E11-080201- 0703	Pit la cess metal (P1). install on	t duc metal	ts							
			pro	0.0314	528410.75	8983.29	16592	282	14755	1543	
					49533.30	3291.78	1555	103		1451	19585
7	\$121-050301- 3001	Hot-rolled smooth	t			-		-		-	
		reinforcing steel, class AI		0.041	198308.00		8293		8293		
		(A240), diameter from 6 to 12 mm, ST RK 25912014		82		-	-	-		663	8957
8	S121-050301-	Welded		02							6937
0	3602	reinforcing steel bar of a periodic profile for reinforced	t								
		concrete structures of		8.384	191925.00	-	1609187	-	1609187	-	
		class A500C with a diameter of 12 to 40 mm			-			-		128735	
		GOST R 52544- 2006									
				46							1737922

9 10	E11-060301- 0407 E11-060501- 0201	Embedde weighing 4 kg / II install	g up to II1 /. on of civil	t	0.371	84 40529 24057	2	1266.03 560.82	894		471 209	6077	/8	81592 18584	250879
	0201	building metal forr / heavy co class B Devia	nwork, oncrete 30 /. ce			61634	.81	27709.12		987	881150	5985'		615461	
			m3		31.8	15102.45		6165.83	480258		196073		206036	2781484	
11		Hot-rolled smooth reinforcing steel, class AI (A240), diameter from 6 to 12 mm, ST RK 2591-2014	t		1.47196	-			-		-	291901	23352	315254	
12		Welded reinforcing steel bar of a periodic profile for reinforced concrete structures of class A500C with a	t		0.4388	198058.00		-	86908		-	86908	- 6953	93860	

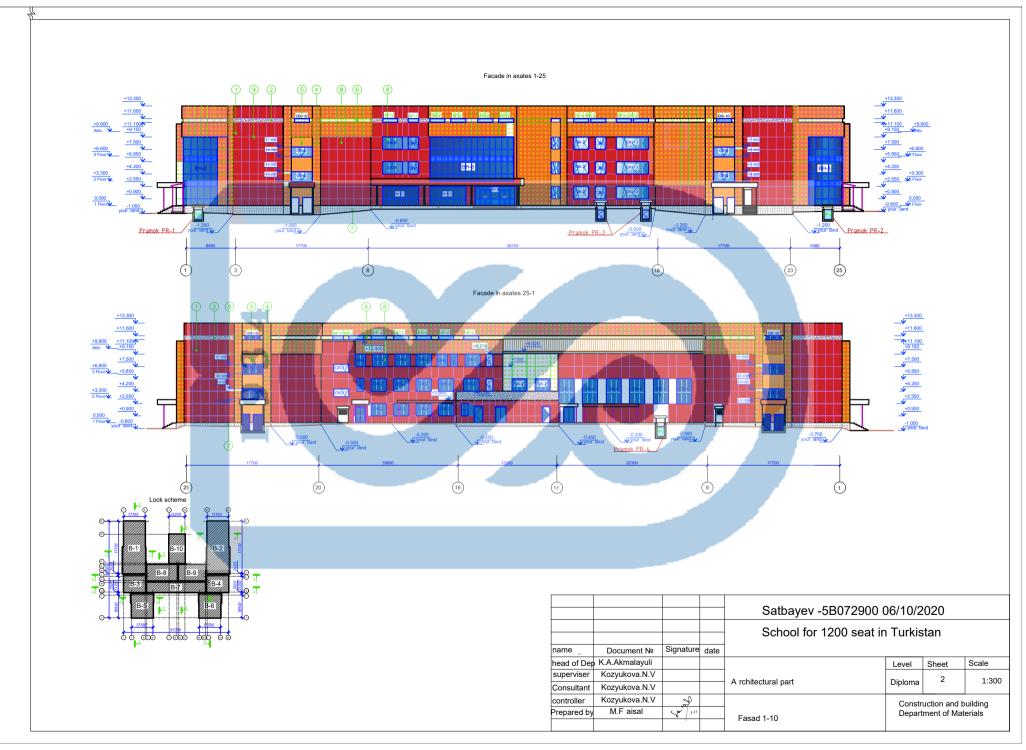
		diameter of 4 to 10 mm GOST R 52544-2006		1	9	34					
13	\$121- 0503013602	Welded reinforcing steel bar of a periodic profile for reinforced concrete structures of class A500C with a diameter of 12 to 40 mm GOST R 52544-2006	t	6.01988	-		-	-	1155365	- 92429	1247795
14	E11- 0603010407	Embedded parts weighing up to 4 kg / SK1 /. install on	t	0.1296	405290.03 240570.00	1266.03 560.82	52526 31178	164 73	21184	28438 6477	87441
15	E11- 0605010201	Columns of civil buildings in metal formwork, / heavy concrete class B30 /. Device	m3	17.22	61634.81 15102.45	27709.12 6165.83	1061351 260064	477151 106176	324136	333278 111570	1506200

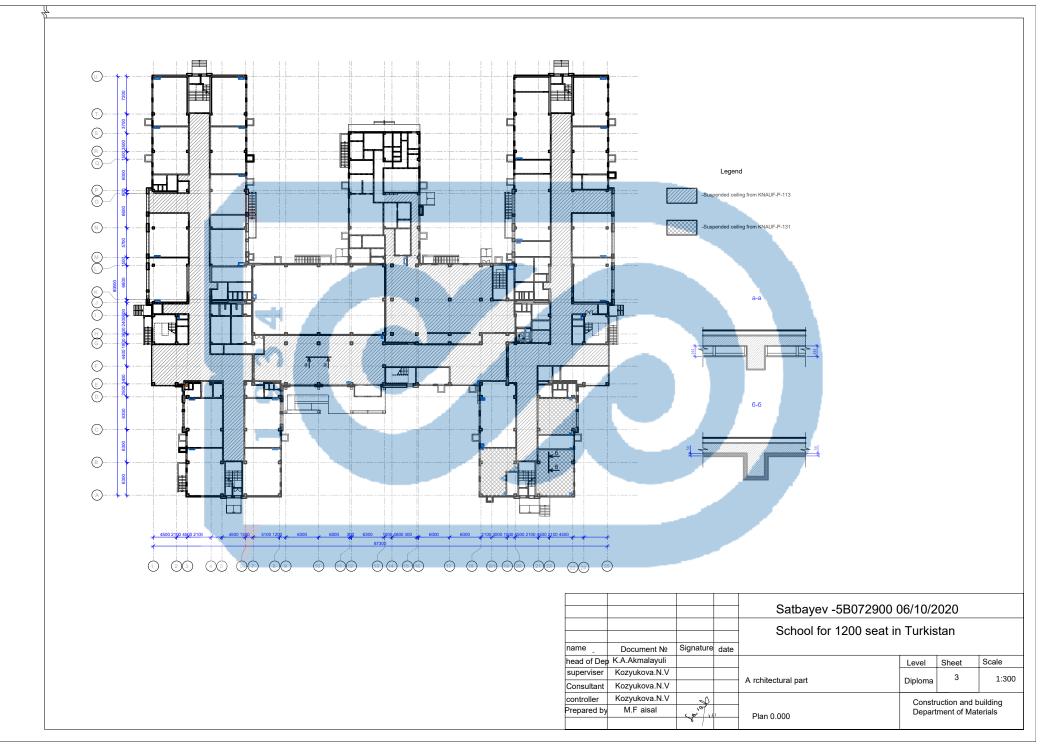
16	S121- 0503013001	Hot-rolled t smooth reinforcing steel, class AI (A240), diameter from 6 to 12 mm, ST RK 2591-2014		0.83902	198308.00	4	-		166384		- 17	9695
17	S121- 0503013601	Hire welded reinforcing bars of a periodic t profile for reinforced concrete structures of class A500C with a diameter of 4 to 10 mm GOST R 52544-2006		0.241	198058.00		47732	-	47732		-	.551
						-	-	-	-		3819	
18	\$121- 050301- 3602	Welded reinforcing periodic profile for concrete structures of with a diameter of GOST R 5254	r reinforced f class A500 12 to 40 mm	DC	3.57176	191925.00	-	685510) -	685510	- 54841	740351
19	E11- 060301-	Embedded parts weig / SK1 /. insta		· kg t	0.0792	405290.03	1266.03	32099	100	12946	17379	53436

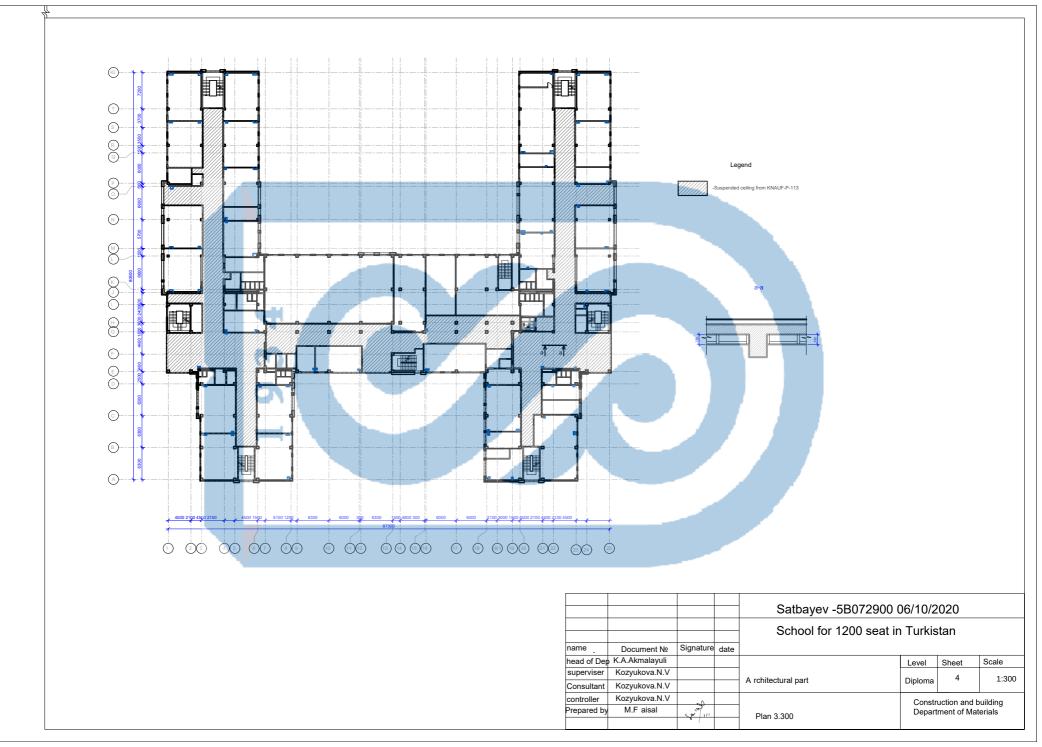

	0407				240570.00	560.82	19053	44		3958	
20	E11- 060501- 0201	Columns of civil buildings in metal formwork, / heavy concrete class B30 /. Device	m3	1 9 3	61634.81	27709.12	3143375	1413165	959985	987061	4460871
					15102.45	6165.83	770225	314457		330435	
21	\$121- 050301- 3001	Hot-rolled smooth reinforcing steel, class AI (A240), diameter from 6 to 12 mm, ST RK 2591-2014	t	2.112	198308.00	-	418826	-	418826	-	452333
					/	-	-	-		33506	
								I		1	I
22	\$121- 050301- 3601	Welded reinforcing steel bar of a periodic profile for reinforced concrete structures of class A500C with a diameter of 4 to 10 mm GOST R 52544-2006	t	0.972	198058.00	-	192512	-	192512	-	207913
23	\$121- 050301- 3602	Welded reinforcing steel bar of a periodic profile for reinforced concrete structures of class A500C with a diameter of 12 to 40 mm GOST R 52544-2006	t	11.5937	191925.00		2225121	-	2225121	- 178010	2403131
24	E11- 060301- 0407	Embedded parts weighing up to 4 kg / SK1, N1 /. install on	t	0.21744	405290.03 240570.00	1266.03 560.82	881 26 52310	275	35541	47713 10867	146706
25	E11-	Columns of civil buildings in metal formwork / heavy concrete class B30	m3		240370.00	500.82	32310	122		10007	
	060501-	formwork / neavy concrete class B30		55						l	I

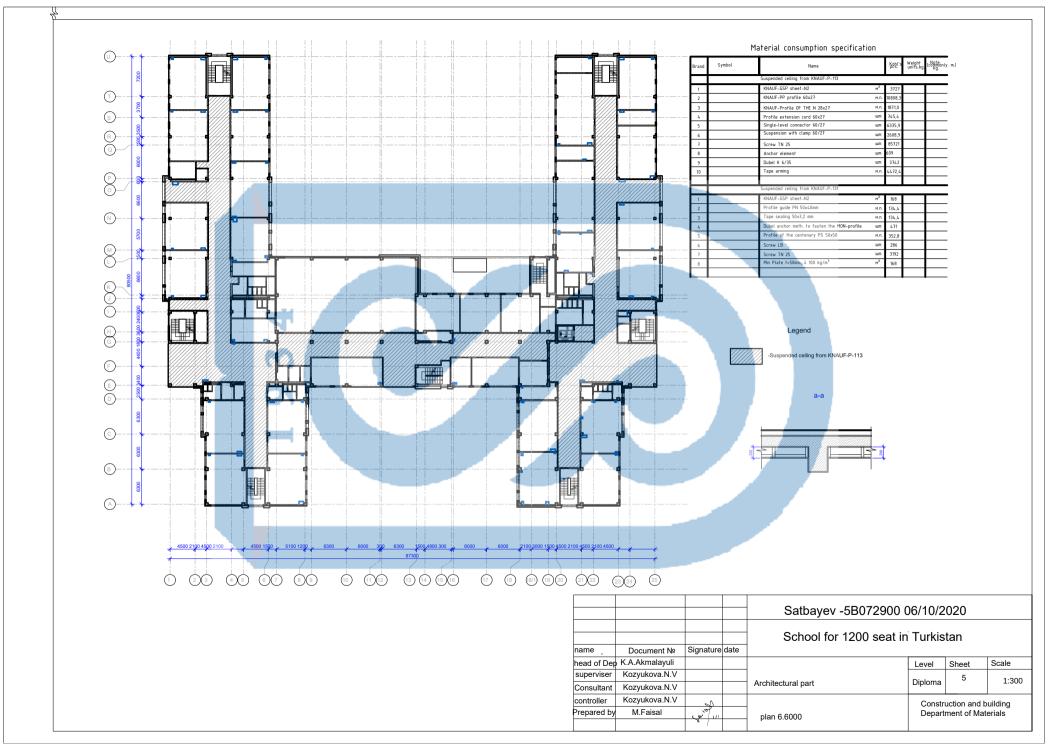

	0201	/. Device									
				10.2							
				1 9 3	6 163 4.81	27709.12	628675	282633	191997	197412	892174
					15102.45	6165.83	154045	62891		66087	
26	\$121- 050301- 3001	Hot-rolled smooth reinforcing steel, class AI (A240), diameter from 6 to 12 mm, ST RK 2591-2014	t	0.6538	198308.00	-	129654	-	129654	_	140026
		SP - 8%				-	-	-		10372	
27	\$121- 050301- 3601	Welded reinforcing steel bar of a periodic profile for reinforced concrete structures of class A500C with a diameter of 4 to 10 mm GOST R 52544-2006	t	0.1944	198058.00	-	38502	-	38502	-	41583
						-	-	-		3080	
28	S121- 050301- 3602	Welded reinforcing steel bar of a periodic profile for reinforced concrete structures of class A500C with a diameter of 12 to 40 mm GOST R 52544-2006	t								
				3.14834	191925.00	-	604245	-	604245	-	652585
					-	-	-	-		48340	
29	E11- 060301- 0407	Embedded parts weighing up to 4 kg / SK1, N1 /. install on	t	0.31408	405290.03	1266.03	127293	398	51337	68918	211909
					240570.00	560.82	75558	176		15697	
30	E11- 060501- 0201	Columns of civil buildings in metal formwork / heavy concrete class B30 /. Device	m3								
	0201			0.75	61634.81	27709.12	46226	20782	14117	14516	65601

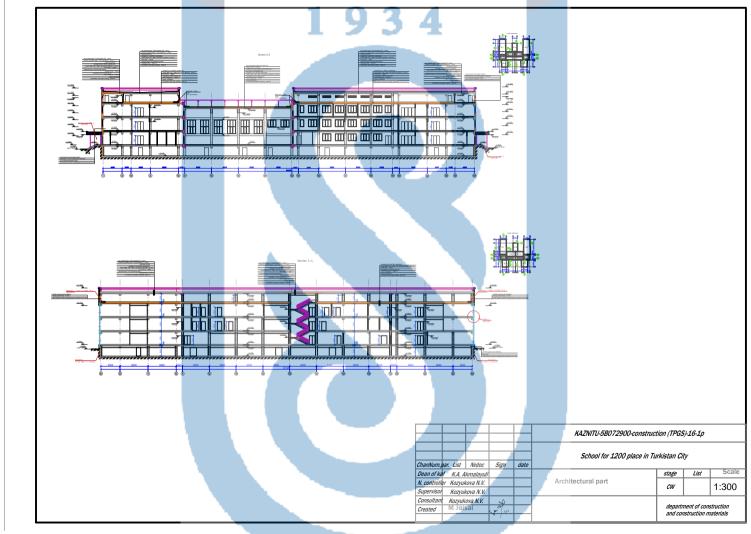
					15102.45	6165.83	11327	4624		4859	
31	\$121- 050301- 3001	Hot-rolled smooth reinforcing steel class AI (A240), diameter from 6 to 12 mm, ST RK 2591-2014		0.0265	198308.00	-	5255	-	5255	420	5676
32	\$121- 050301- 3601	Welded reinforcing steel bar of a periodic profile for reinforced concrete structures of class A500C with a diameter of 4 to 10 mm GOST R 52544-2006	t	0.0108	198058.00	-	2139	-	2139	- 171	2310
33	\$121- 050301- 3602	Welded reinforcing steel bar of a periodic profile for reinforced concrete structures of class A500C with a diameter of 12 to 40 mm GOST R 52544-2006	ť	0.112 1919	25.00 -	214			1496	- 1720	23215
34	E11- 060301- 0407	Embedded parts weighing up to 4 kg / SK1 /. install on	t		90.03 1266 70.00 560			5	588	790 180	2429
35	E11- 060501- 0201	Columns of civil buildings in metal formwork / heavy concrete class B30 /. Device	n3		34.81 2770 02.45 6165			180 1 23	1670	12000 4017	54230
36	S121-	Hot-rolled smooth reinforcing	t		-			-		-	

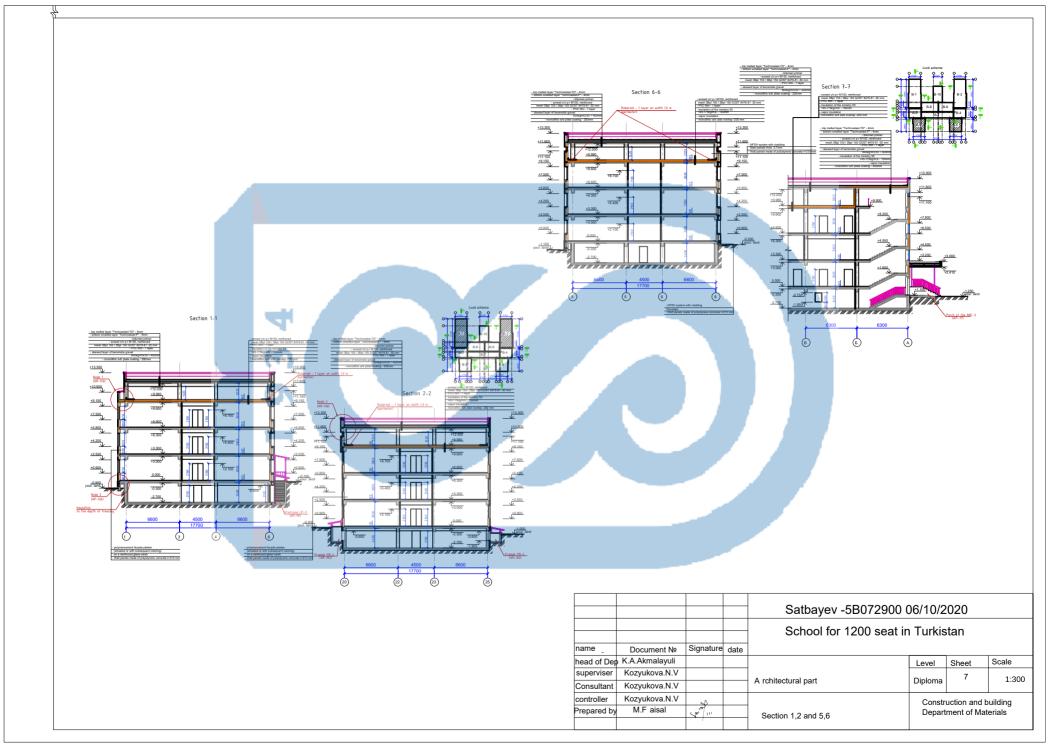

	050301-	steel, class AI (A240), diameter									
	3001	from 6 to 12 mm, ST RK 2591- 2014		0.0234	198308.00		4640		4640		5012
		2014		0.0234	198308.00		4040		4040		5012
				1 7	2 4	-	-	-		371	
37	\$121- 050301- 3601	Welded reinforcing steel bar of a periodic profile for reinforced concrete structures of class A500C with a diameter of 4 to 10 mm GOST R 52544-2006	t	0.0108	198058.00		2139	_	2139	_	2310
					-		-	-		171	
20	6101	W 11.1									
38	\$121- 050301- 3602	Welded reinforcing steel bar of a periodic profile for reinforced concrete structures of class A500C with a diameter of 12 to 40 mm GOST R 52544-2006	t	0.098	191925.00		18809	_	18809	_	20313
										1505	
					-		-	-		1505	
39	E11- 060301- 0407	Embedded parts weighing up to 4 kg / SK1 /. install on	t	0.0036	405290.03	1266.03	1459	5	588	790	2429
					240570.00	560.82	866	2		180	
40	E11- 060501- 0201	Columns of civil buildings in metal formwork / heavy concrete class B30 /. Device	m3	11.1	61634.81	27709.12	684146	307571	208938	214831	970895
				11.1					208938		970893
					15102.45	6165.83	167637	68441		71918	
41	\$121- 050301- 3001	Hot-rolled smooth reinforcing steel, class AI (A240), diameter from 6 to 12 mm, ST RK 2591- 2014	t	0.4556	198308.00		90349	-	90349	_	97577
				0.4330							21211
					-	-	-	-		7228	

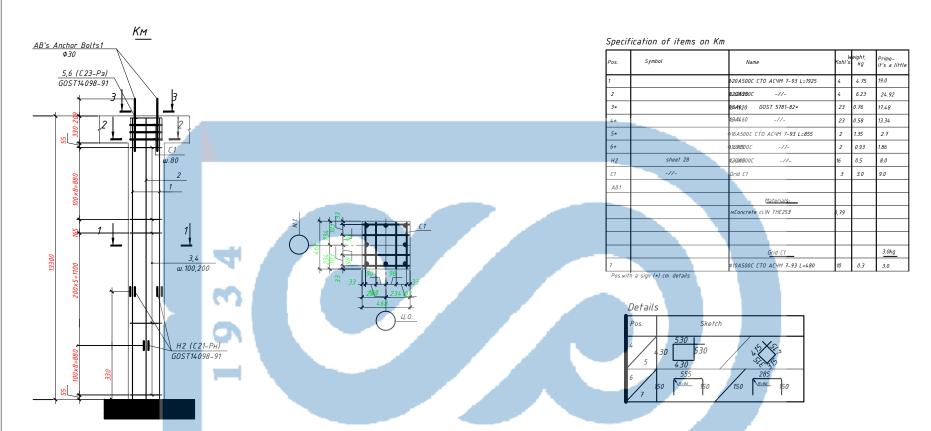

				I	1					-		
42	\$121- 050301- 3601	Welded reinforcing steel a periodic profile for rein concrete structures of A500C with a diameter 10 mm GOST R 52544	nforced class of 4 to	t	0.216	3 198058.00	-	42781	-	42781	- 3422	46203
43	\$121- 050301- 3602	Welded reinforcing stee a periodic profile for rein concrete structures of A500C with a diameter of 40 mm GOST R 52544	nforced class of 12 to		2.6392	191925.00		506528	-	506528	- 40522	547051
44	E11- 060301- 0407	Embedded parts weighin 4 kg / SK1 /. Install		t	0.072	405290.03 240570.00	1266.03 560.82	29181 17321	91 40	11769	15799 3598	48578
	TOTAL BASED ON: INCLUDING:			Tenge								761657880657
	- Salary	of construct on workers		Tenge				2951970				
	- Costs	s of opera ng machines		Tenge					4084976			
	- including the salary of drivers			Tenge					914939			
	- Materials, products and structures		Tenge						26797931			
	- Overhead			Tenge							3518921	

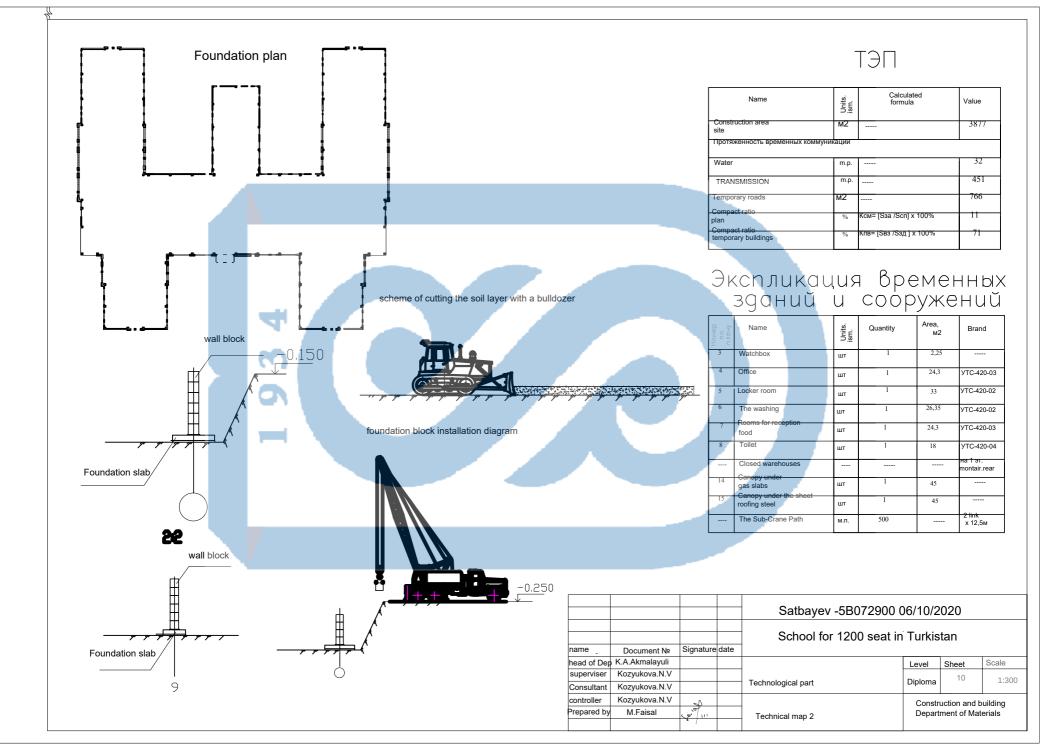


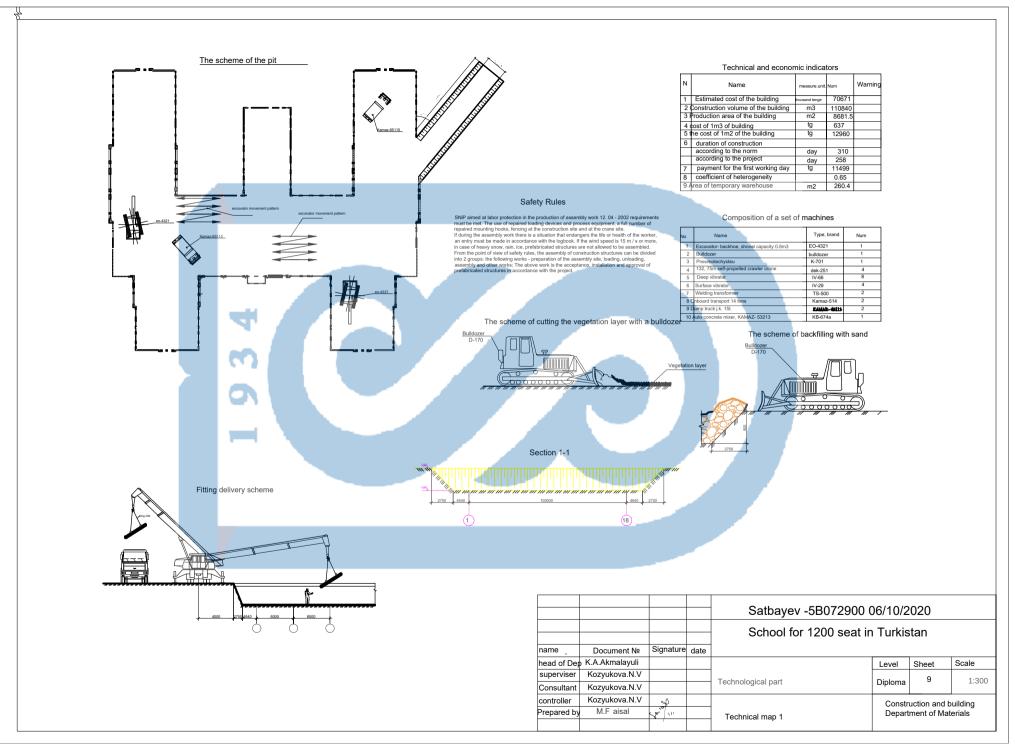


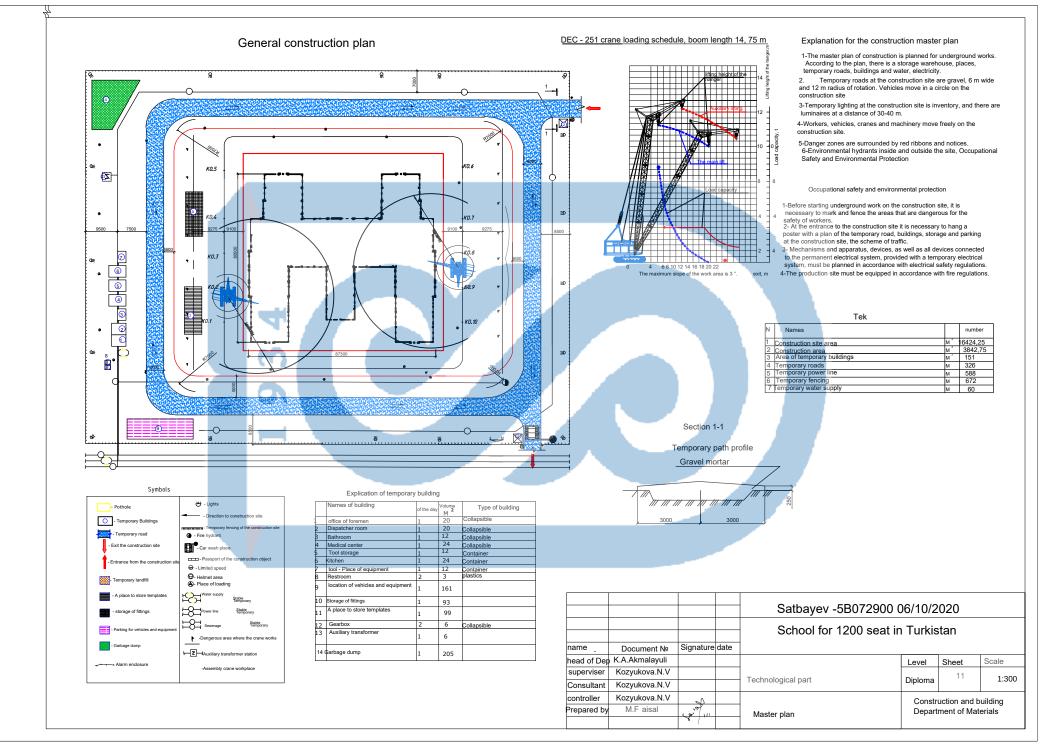

name _	Document №	Signature	date				
head of Dep	K.A.Akmalayuli				Level	Sheet	Scale
superviser	Kozyukova.N.V			A rchitectural part	Dinlama	1	1:300
Consultant	Kozyukova.N.V			A formedural part	Diploma		1.500
controller	Kozyukova.N.V	Ą			Constr	uction and b	uildina
Prepared by	M.F aisal	50 111		General plan		ment of Mat	
		1		Conside plan			



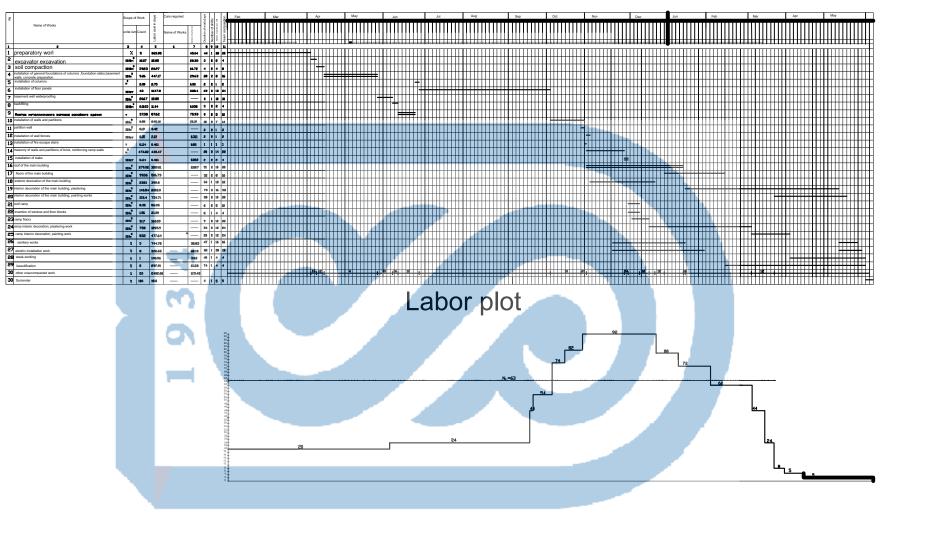





1.Concrete columns in the adjoining slab to lead after the installation of the working Slab and indirect reinforcement rebar (WITH1).
2.The protective layer of concrete is taken along the outer edge of the vertical fitting column.
3.Sizes of clamps are given on the inner face of clamps.
4.Welding to lead electrodes E42And on GOST 9467-75.
5.The specification of the items and the expense statement became Km2


				Satbayev -5B072900 06/10/2020						
		Signature	data	Scool for 1200 seat in	Turkista	an				
name _	Document №	Signature	uale							
head of Dep	K.A.Akmalayuli				Level	Sheet	Scale			
superviser	Kozyukova.N.V				D : 1	8	4 000			
Consultant	Kozyukova.N.V			Constructive part	Diploma		1:300			
controller	Kozyukova.N.V	Ŷ			Constr	uction and	building			
Prepared by	M.F aisal	(20) 111		Column		ment of Ma				
		,		Column						

Expense billing became per item, kg


	Rebar	produc	ts							
	Class armature									
ltem brand	A500C AI							4/	Just	
	CTO AC4M 7-93 GOST 5781-82						5781-82*			
	¢10	¢16	¢20	¢25	Ф28	итого	Ø8	total		
Column Km2	9.0	4.56	51.92	-	-	65.48	80.82 3	0.82	96.3	

work schedule

				Satbayev -5B072900 06/10/2020					
				School for 1200 seat in	Turkis	stan			
name _	Document №	Signature	date						
head of Dep	K.A.Akmalayuli				Level	Sheet	Scale		
superviser	Kozyukova.N.V			To show she wis show suff	i.	12	1:300		
Consultant	Kozyukova.N.V			Technological part	Diploma		1.300		
controller	Kozyukova.N.V	a,			Constr	uction and b	uildina		
Prepared by	M.F aisal	(a) 1/1		Work schedule		ment of Mat			

Протокол анализа Отчета подобия Научным руководителем

Заявляю, что я ознакомился(-ась) с Полным отчетом подобия, который был сгенерирован Системой выявления и предотвращения плагиата в отношении работы:

Автор: Сарвари Мохамед Файсал

Название: School for 1200 places in Turkestan

Координатор:Надежда Козюкова

Коэффициент по	добия	a 1 :1,1	
Коэффициент по	одобия	1934	
Замена букв:47			
Интервалы:0			
Микропробелы:	0		
Белые знаки: 0			

После анализа Отчета подобия констатирую следующее:

- обнаруженные в работе заимствования являются добросовестными и не обладают признаками плагиата. В связи с чем, признаю работу самостоятельной и допускаю ее к защите;
- □ обнаруженные в работе заимствования не обладают признаками плагиата, но их чрезмерное количество вызывает сомнения в отношении ценности работы по существу и отсутствием самостоятельности ее автора. В связи с чем, работа должна быть вновь отредактирована с целью ограничения заимствований;
- обнаруженные в работе заимствования являются недобросовестными и обладают признаками плагиата, или в ней содержатся преднамеренные искажения текста, указывающие на попытки сокрытия недобросовестных заимствований. В связи с чем, не допускаю работу к защите.

Обоснование:

Обнаруженные в работе заимствования являются добросовестными, и не обладают признаками плагиата. В связи с чем, признаю работу самлстоятельной и допускаю ее к защите.

•••••••••••

Подпись Научного руководителя

Дата

Протокол анализа Отчета подобия

заведующего кафедрой / начальника структурного подразделения

Заведующий кафедрой / начальник структурного подразделения заявляет, что ознакомился(-ась) с Полным отчетом подобия, который был сгенерирован Системой выявления и предотвращения плагиата в отношении работы:

Автор: Сарвари Мохамед Файсал

Название: School for 1200 places in Turkestan

Координатор: На	адежда	а Козю	кова				
Коэффициент по	одобия	t 1: 1,1]	93	3 4	ŀ	
Коэффициент по	добия	1 2: 0					
Замена букв:47							
Интервалы:0							
Микропробелы:	0						
Белые знаки:0							

После анализа отчета подобия заведующий кафедрой / начальник структурного подразделения констатирует следующее:

• обнаруженные в работе заимствования являются добросовестными и не обладают признаками плагиата. В связи с чем, работа признается самостоятельной и допускается к защите; Обнаруженные в работе заимствования не обладают признаками плагиата, но их чрезмерное количество вызывает сомнения в отношении ценности работы по существу и отсутствием самостоятельности ее автора. В связи с чем, работа должна быть вновь отредактирована с целью ограничения заимствований;

обнаруженные в работе заимствования являются недобросовестными и обладают признаками плагиата, или в ней содержатся преднамеренные искажения текста, указывающие на попытки сокрытия недобросовестных заимствований. В связи с чем, работа не допускается к защите.

Обоснование:	
Обнаруженные в работе заимо	ствования являются добросовестными
и не обладают признаками пл	агиата.
•В•связи•с•чем;•работа•признает	гся самостоятельной и допускается к защите;
	At
	Arce
Дата	Подпись заведующего кафедрой /

Подпись заведующего кафедрой /

начальника структурного подразделения

Окончательное решение в отношении допуска к	защите, включая обоснование:
Работа признается самостоятельной и доп	ускается к защите.
Обнаруженные в работе заимствования яв	ляются добросовестными
и не обладают признаками плагиата	
	Aprece

.....

Дата

Подпись заведующего кафедрой /

начальника структурного подразделения

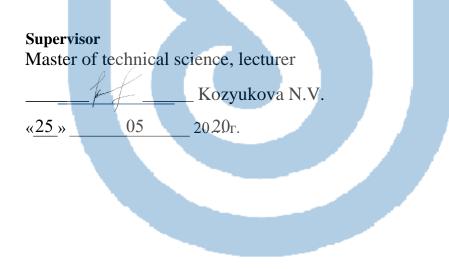
МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РЕСПУБЛИКИ КАЗАХСТАН СӘТБАЕВ УНИВЕРСИТЕТІ

RESPONSE

OF THE SUPERVISOR

for the graduation project

Sarwari Mohammad Faisal 5B072900-Civil Engineering


Topic: "School for 1200 places in Turkestan"

Graduation project of Sarwari Mohammad Faisal made in accordance with the requirements and includes all the necessary sections of the diploma project. In the Architectural part, facades, sections, floor plans and connection nodes of structures are presented. The thermotechnical calculation of the wall fencing was made.

In the constructive section, the calculation of the floor slab, frames on the LIRA CAD program is performed. In the technological part, technological maps for earthworks and stone works have been developed.

The economic part of the project is calculated according to the program of SMETA of the RK. All drawings are made in Autocad.

In general, the graduation project was performed at a good level, the student Sarwari Mohammad Faisal showed good knowledge both during training and during the implementation of the project. The work deserves a good grade.

